32 research outputs found

    Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols

    Get PDF
    Senescent cells display an increase in the secretion of growth factors, inflammatory cytokines and proteolytic enzymes, termed the “senescence-associated-secretory-phenotype” (SASP), playing a major role in many age-related diseases. The phenolic compounds present in extra-virgin olive oil are inhibitors of oxidative damage and have been reported to play a protective role in inflammation-related diseases. Particularly, hydroxytyrosol and oleuropein are the most abundant and more extensively studied. Pre-senescent human lung (MRC5) and neonatal human dermal (NHDF) fibroblasts were used as cellular model to evaluate the effect of chronic (4–6 weeks) treatment with 1 μM hydroxytyrosol (HT) or 10 μM oleuropein aglycone (OLE) on senescence/inflammation markers. Both phenols were effective in reducing β-galactosidase-positive cell number and p16 protein expression. In addition, senescence/inflammation markers such as IL-6 and metalloprotease secretion, and Ciclooxigenase type 2 (COX-2) and α-smooth-actin levels were reduced by phenol treatments. In NHDF, COX-2 expression, Nuclear Factor κ-light-chain-enhancer of activated B cells (NFκB) protein level and nuclear localization were augmented with culture senescence and decreased by OLE and HT treatment. Furthermore, the inflammatory effect of Tumor Necrosis Factor α (TNFα) exposure was almost completely abolished in OLE- and HT-pre-treated NHDF. Thus, the modulation of the senescence-associated inflammatory phenotype might be an important mechanism underlying the beneficial effects of olive oil phenols

    Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Get PDF
    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells

    Altered cholesterol ester cycle in ex vivo skin fibroblasts from Alzheimer patients

    Get PDF
    Recent studies in both animal and cell models of Alzheimer's disease (AD) indicated that sub-cellular cholesterol distribution seems to regulate amyloid-beta (A[beta]) generation in the brain. In particular, cholesterol-esters (CE), rather than total cholesterol levels, appear directly correlated with A[beta] production. Here we observed that, similarly to brain cells, skin fibroblasts obtained from AD patients produce and accumulate more CE than skin fibroblasts from age-matched healthy controls do. AD fibroblasts also exhibited a 2 fold increase in the expression of ACAT1, in addition to lower levels of SREBP2, nCEH, Caveolin-1 and ABCA1 mRNA levels, all of which are involved in the CE cycle. HMGCoA-reductase and LDL-receptor mRNAs levels did not show statistically significant changes in AD, compared to non-AD, cells. Furthermore, although APP mRNA did not significantly vary, neprilysin (NEP), the most important enzyme in the proteolysis of A[beta], was expressed at very low levels in skin fibroblasts of sporadic AD patients. Our results contribute to the concept that AD may be the consequence of a basic and systemic defect in the CE cycle. Moreover, our results identify new possible targets for the diagnosis, prevention, and cure or, at least, amelioration of the symptoms of AD

    Accumulation of neutral lipids in peripheral blood mononuclear cells as a distinctive trait of Alzheimer patients and asymptomatic subjects at risk of disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease is the most common progressive neurodegenerative disease. In recent years, numerous progresses in the discovery of novel Alzheimer's disease molecular biomarkers in brain as well as in biological fluids have been made. Among them, those involving lipid metabolism are emerging as potential candidates. In particular, an accumulation of neutral lipids was recently found by us in skin fibroblasts from Alzheimer's disease patients. Therefore, with the aim to assess whether peripheral alterations in cholesterol homeostasis might be relevant in Alzheimer's disease development and progression, in the present study we analyzed lipid metabolism in plasma and peripheral blood mononuclear cells from Alzheimer's disease patients and from their first-degree relatives.</p> <p>Methods</p> <p>Blood samples were obtained from 93 patients with probable Alzheimer's disease and from 91 of their first-degree relatives. As controls we utilized 57, cognitively normal, over-65 year-old volunteers and 113 blood donors aged 21-66 years, respectively. Data are reported as mean ± standard error. Statistical calculations were performed using the statistical analysis software Origin 8.0 version. Data analysis was done using the Student t-test and the Pearson test.</p> <p>Results</p> <p>Data reported here show high neutral lipid levels and increased ACAT-1 protein in about 85% of peripheral blood mononuclear cells freshly isolated (<it>ex vivo</it>) from patients with probable sporadic Alzheimer's disease compared to about 7% of cognitively normal age-matched controls. A significant reduction in high density lipoprotein-cholesterol levels in plasma from Alzheimer's disease blood samples was also observed. Additionally, correlation analyses reveal a negative correlation between high density lipoprotein-cholesterol and cognitive capacity, as determined by Mini Mental State Examination, as well as between high density lipoprotein-cholesterol and neutral lipid accumulation. We observed great variability in the neutral lipid-peripheral blood mononuclear cells data and in plasma lipid analysis of the subjects enrolled as Alzheimer's disease-first-degree relatives. However, about 30% of them tend to display a peripheral metabolic cholesterol pattern similar to that exhibited by Alzheimer's disease patients.</p> <p>Conclusion</p> <p>We suggest that neutral lipid-peripheral blood mononuclear cells and plasma high density lipoprotein-cholesterol determinations might be of interest to outline a distinctive metabolic profile applying to both Alzheimer's disease patients and asymptomatic subjects at higher risk of disease.</p
    corecore