87 research outputs found
Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations
Accurate calculation of underwater light is fundamental to predictions of upper-ocean heating, primary production, and photo-oxidation. However, most ocean models simulating these processes do not yet incorporate radiative transfer modules for their light calculations. Such models are often driven by abovesurface, broadband, daily averaged irradiance or photosynthetically available radiation (PAR) values obtained from climatology or satellite observations, sometimes without correction for sea-surface reflectance, even though surface reflectance can reduce in-water values by more than 20%. We present factors computed by a radiative transfer code that can be used to convert above-surface values in either energy or quantum units to in-water net irradiance, as needed for calculations of water heating, and to inwater PAR, as needed for calculations of photosynthesis and photo-oxidation
The A Posteriori Aspects of Estuarine Modeling
This exercise is the application of an analytical method for systematically modeling ecosystems data to observations made on a naturally eutrophic, mesohaline planktonic microcosm. The theory and experimental design are briefly outlined and the particular steps in the acutal modeling process follow.
Then there is a discussion as to how the whole endeavor can be refined to culminate in models with predictive capabilities. (PDF has 16 pages.
Phase function effects on oceanic light fields
Numerical simulations show that underwater radiances, irradiances, and reflectances are sensitive to the shape of the scattering phase function at intermediate and large scattering angles, although the exact shape of the phase function in the backscatter directions (for a given backscatter fraction) is not critical if errors of the order of 10% are acceptable. We present an algorithm for generating depth–and wavelength-dependent Fournier–Forand phase functions having any desired backscatter fraction. Modeling of a comprehensive data set of measured inherent optical properties and radiometric variables shows that use of phase functions with the correct backscatter fraction and overall shape is crucial to achieve model–data closure
Optical modeling of ocean waters: Is the case 1 - case 2 classification still useful?
…two extreme cases can be identified and separated. Case 1 is that of a concentration of phytoplankton high compared to other particles…. In contrast, the inorganic particles are dominant in case 2.… In both cases dissolved yellow substance is present in variable amounts.… An ideal case 1 would be a pure culture of phytoplankton and an ideal case 2 a suspension of nonliving material with a zero concentration of pigments.
Morel and Prieur emphasized that these ideal cases are not encountered in nature, and they suggested the use of high or low values of the ratio of pigment concentration to scattering coefficient as a basis for discriminating between Case 1 and Case 2 waters. Although no specific values of this ratio were proposed to serve as criteria for classification, their example data suggested that the ratio of chlorophyll a concentration (in mg m-3) to the scattering coefficient at 550 nm (in m-1) in Case 1 waters is greater than 1 and in Case 2 waters is less than 1. Importantly, however, Morel and Prieur also showed data classified as “intermediate waters” with the ratio between about 1 and 2.2.
Although the original definition from 1977 did not imply a binary classification, the practice of most investigators in the following years clearly evolved toward a bipartite analysis
Atmospheric correction of AVIRIS data of Monterey Bay contaminated by thin cirrus clouds
Point source measurements (e.g. sun photometer data, weather station observations) are often used to constrain radiative transfer models such as MODTRAN/LOWTRAN7 when atmospherically correcting AVIRIS imagery. The basic assumption is that the atmosphere is horizontally homogeneous throughout the entire area. If the target area of interest is isolated a distance away from the point measurement position, the calculated visibility and atmospheric profiles may not be characteristic of the atmosphere over the target. AVIRIS scenes are often rejected when cloud cover exceeds 10%. However, if the cloud cover is determined to be primarily cirrus rather than cumulus, in-water optical properties may still be extracted over open ocean. High altitude cirrus clouds are non-absorbing at 744 nm. If the optical properties of the AVIRIS scene can be determined from the 744 nm band itself, the atmospheric conditions during the overflight may be deduced
Toward closure of upwelling radiance in coastal waters
We present three methods for deriving water-leaving radiance Lw(λ) and remote-sensing reflectance using a hyperspectral tethered spectral radiometer buoy (HyperTSRB), profiled spectroradiometers, and Hydrolight simulations. Average agreement for 53 comparisons between HyperTSRB and spectroradiometric determinations of Lw(λ) was 26%, 13%, and 17% at blue, green, and red wavelengths, respectively. Comparisons of HyperTSRB (and spectroradiometric) Lw(λ) with Hydrolight simulations yielded percent differences of 17% (18%), 17% (18%), and 13% (20%) for blue, green, and red wavelengths, respectively. The differences can be accounted for by uncertainties in model assumptions and model input data (chlorophyll fluorescence quantum efficiency and the spectral chlorophyll-specific absorption coefficient for the red wavelengths, and scattering corrections for input ac-9 absorption data and volume scattering function measurements for blue wavelengths) as well as radiance measurement inaccuracies [largely differences in the depth of the Lu(λ, z) sensor on the HyperTSRB]. © 2003 Optical Society of America
Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments
Science, resource management, and defense need algorithms capable of using airborne or satellite imagery to accurately map bathymetry, water quality, and substrate composition in optically shallow waters. Although a variety of inversion algorithms are available, there has been limited assessment of performance and no work has been published comparing their accuracy and efficiency. This paper compares the absolute and relative accuracies and computational efficiencies of one empirical and five radiative-transfer-based published approaches applied to coastal sites at Lee Stocking Island in the Bahamas and Moreton Bay in eastern Australia. These sites have published airborne hyperspectral data and field data. The assessment showed that (1) radiative-transfer-based methods were more accurate than the empirical approach for bathymetric retrieval, and the accuracies and processing times were inversely related to the complexity of the models used; (2) all inversion methods provided moderately accurate retrievals of bathymetry, water column inherent optical properties, and benthic reflectance in waters less than 13 m deep with homogeneous to heterogeneous benthic/substrate covers; (3) slightly higher accuracy retrievals were obtained from locally parameterized methods; and (4) no method compared here can be considered optimal for all situations. The results provide a guide to the conditions where each approach may be used (available image and field data and processing capability). A re-analysis of these same or additional sites with satellite hyperspectral data with lower spatial and radiometric resolution, but higher temporal resolution would be instructive to establish guidelines for repeatable regional to global scale shallow water mapping approaches
Modulation of γ-Secretase Reduces β-Amyloid Deposition in a Transgenic Mouse Model of Alzheimer's Disease
SummaryAlzheimer's disease (AD) is characterized pathologically by the abundance of senile plaques and neurofibrillary tangles in the brain. We synthesized over 1200 novel gamma-secretase modulator (GSM) compounds that reduced Aβ42 levels without inhibiting epsilon-site cleavage of APP and Notch, the generation of the APP and Notch intracellular domains, respectively. These compounds also reduced Aβ40 levels while concomitantly elevating levels of Aβ38 and Aβ37. Immobilization of a potent GSM onto an agarose matrix quantitatively recovered Pen-2 and to a lesser degree PS-1 NTFs from cellular extracts. Moreover, oral administration (once daily) of another potent GSM to Tg 2576 transgenic AD mice displayed dose-responsive lowering of plasma and brain Aβ42; chronic daily administration led to significant reductions in both diffuse and neuritic plaques. These effects were observed in the absence of Notch-related changes (e.g., intestinal proliferation of goblet cells), which are commonly associated with repeated exposure to functional gamma-secretase inhibitors (GSIs)
The Visual Orbit of iota Pegasi
We have determined the visual orbit for the spectroscopic binary iota~Pegasi
with interferometric visibility data obtained by the Palomar Testbed
Interferometer in 1997. iota~Pegasi is a double-lined binary system whose
minimum masses and spectral typing suggests the possibility of eclipses. Our
orbital and component diameter determinations do not favor the eclipse
hypothesis: the limb-to-limb separation of the two components is 0.151 +/-
0.069 mas at conjunction. Our conclusion that the iota~Peg system does not
eclipse is supported by high-precision photometric observations.
The physical parameters implied by our visual orbit and the spectroscopic
orbit of Fekel and Tomkin (1983) are in good agreement with those inferred by
other means. In particular, the orbital parallax of the system is determined to
be 86.9 +/- 1.0 mas, and masses of the two components are determined to be
1.326 +/- 0.016 M_sun and 0.819 +/- 0.009 M_sun respectively.Comment: ApJ in press. 23 pages, 4 figures & 3-page data tabl
A broad spectral, interdisciplinary investigation of the electromagnetic properties of sea ice
This paper highlights the interrelationship of research completed by a team of investigators and presented in the several individual papers comprising this Special Section on the Office of Naval Research (ONR), Arlington, VA, Sponsored Sea Ice Electromagnetics Accelerated Research Initiative (ARI). The objectives of the initiative were the following: 1) understand the mechanisms and processes that link the morphological and physical properties of sea ice to its electromagnetic (EM) characteristics; 2) develop and verify predictive models for the interaction of visible, infrared, and microwave radiation with sea ice; 3) develop and verify inverse scattering techniques applicable to problems involving the interaction of EM radiation with sea ice. Guiding principles for the program were that all EM data be taken with concurrent physical property data (salinity, density, roughness, etc.) and that broad spectral data be acquired in as nearly a simultaneous fashion as possible. Over 30 investigators participated in laboratory, field, and modeling studies that spanned the EM spectrum from radio to ultraviolet wavelengths. An interdisciplinary approach that brought together sea ice physicists, remote-sensing experts tin EM measurements), and forward and inverse modelers (primarily mathematicians and EM theorists) was a hallmark of the program. Along with describing results from experiments and modeling efforts, possible paradigms for using broad spectral data in developing algorithms for analyzing remote-sensing data in terms of ice concentration, age, type, and possibly thickness are briefly discussed
- …