8,354 research outputs found

    Decays of J/ψJ/\psi and ψ\psi^\prime into vector and pseudoscalar meson and the pseudoscalar glueball-qqˉq\bar{q} mixing

    Get PDF
    We introduce a parametrization scheme for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP where the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation (DOZI) can be parametrized by certain parameters with explicit physical interpretations. This scheme can be used to clarify the glueball-qqˉq\bar{q} mixing within the pseudoscalar mesons. We also include the contributions from the electromagnetic (EM) decays of J/ψJ/\psi and ψ\psi^\prime via J/ψ(ψ)γVPJ/\psi(\psi^\prime)\to \gamma^*\to VP. Via study of the isospin violated channels, such as J/ψ(ψ)ρηJ/\psi(\psi^\prime)\to \rho\eta, ρη\rho\eta^\prime, ωπ0\omega\pi^0 and ϕπ0\phi\pi^0, reasonable constraints on the EM decay contributions are obtained. With the up-to-date experimental data for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP, J/ψ(ψ)γPJ/\psi(\psi^\prime)\to \gamma P and PγγP\to \gamma\gamma, etc, we arrive at a consistent description of the mentioned processes with a minimal set of parameters. As a consequence, we find that there exists an overall suppression of the ψ3g\psi^\prime\to 3g form factors, which sheds some light on the long-standing "ρπ\rho\pi puzzle". By determining the glueball components inside the pseudoscalar η\eta and η\eta^\prime in three different glueball-qqˉq\bar{q} mixing schemes, we deduce that the lowest pseudoscalar glueball, if exists, has rather small qqˉq\bar{q} component, and it makes the η(1405)\eta(1405) a preferable candidate for 0+0^{-+} glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was corrected. There's slight change to the numerical results, while the conclusion is intac

    Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface

    Full text link
    Many-body interactions in transition-metal oxides give rise to a wide range of functional properties, such as high-temperature superconductivity, colossal magnetoresistance, or multiferroicity. The seminal recent discovery of a two-dimensional electron gas (2DEG) at the interface of the insulating oxides LaAlO3 and SrTiO3 represents an important milestone towards exploiting such properties in all-oxide devices. This conducting interface shows a number of appealing properties, including a high electron mobility, superconductivity, and large magnetoresistance and can be patterned on the few-nanometer length scale. However, the microscopic origin of the interface 2DEG is poorly understood. Here, we show that a similar 2DEG, with an electron density as large as 8x10^13 cm^-2, can be formed at the bare SrTiO3 surface. Furthermore, we find that the 2DEG density can be controlled through exposure of the surface to intense ultraviolet (UV) light. Subsequent angle-resolved photoemission spectroscopy (ARPES) measurements reveal an unusual coexistence of a light quasiparticle mass and signatures of strong many-body interactions.Comment: 14 pages, 4 figures, supplementary information (see other files

    Hidden one-dimensional electronic structure and non-Fermi liquid angle resolved photoemission line shapes of η\eta-Mo4_4O11_{11}

    Full text link
    We report angle resolved photoemission (ARPES) spectra of η\eta-Mo4_4O11_{11}, a layered metal that undergoes two charge density wave (CDW) transitions at 109 K and 30 K. We have directly observed the ``hidden one-dimensional (hidden-1d)'' Fermi surface and an anisotropic gap opening associated with the 109 K transition, in agreement with the band theoretical description of the CDW transition. In addition, as in other hidden-1d materials such as NaMo6_6O17_{17}, the ARPES line shapes show certain anomalies, which we discuss in terms of non-Fermi liquid physics and possible roles of disorder.Comment: 3 figures; Erratum added to include missed reference

    Crossover from Percolation to Self-Organized Criticality

    Full text link
    We include immunity against fire as a new parameter into the self-organized critical forest-fire model. When the immunity assumes a critical value, clusters of burnt trees are identical to percolation clusters of random bond percolation. As long as the immunity is below its critical value, the asymptotic critical exponents are those of the original self-organized critical model, i.e. the system performs a crossover from percolation to self-organized criticality. We present a scaling theory and computer simulation results.Comment: 4 pages Revtex, two figures included, to be published in PR

    Extracting the spectral function of the cuprates by a full two-dimensional analysis: Angle-resolved photoemission spectra of Bi2Sr2CuO6

    Full text link
    Recently, angle-resolved photoemission spectroscopy (ARPES) has revealed a dispersion anomaly at high binding energy near 0.3-0.5eV in various families of the high-temperature superconductors. For further studies of this anomaly we present a new two-dimensional fitting-scheme and apply it to high-statistics ARPES data of the strongly-overdoped Bi2Sr2CuO6 cuprate superconductor. The procedure allows us to extract theself-energy in an extended energy and momentum range. It is found that the spectral function of Bi2Sr2CuO6 can be parameterized using a small set of tight-binding parameters and a weakly-momentum-dependent self-energy up to 0.7 eV in binding energy and over the entire first Brillouin zone. Moreover the analysis gives an estimate of the momentum dependence of the matrix element, a quantity, which is often neglected in ARPES analyses.Comment: 8 pages, 5 figure

    Doping dependence of the (π,π)(\pi,\pi) shadow band in La-based cuprates studied by angle-resolved photoemission spectroscopy

    Full text link
    The (π,π)(\pi,\pi) shadow band (SB) in La-based cuprate family (La214) was studied by angle-resolved photoemission spectroscopy (ARPES) over a wide doping range from x=0.01x=0.01 to x=0.25x=0.25. Unlike the well-studied case of the Bi-based cuprate family, an overall strong, monotonic doping dependence of the SB intensity at the Fermi level (EFE_F) was observed. In contrast to a previous report for the presence of the SB only close to x=1/8x=1/8, we found it exists in a wide doping range, associated with a doping-independent (π,π)(\pi,\pi) wave vector but strongly doping-dependent intensity: It is the strongest at x0.03x\sim 0.03 and systematically diminishes as the doping increases until it becomes negligible in the overdoped regime. This SB with the observed doping dependence of intensity can in principle be caused by the antiferromagnetic fluctuations or a particular form of low-temperature orthorhombic lattice distortion known to persist up to x0.21x\sim 0.21 in the system, with both being weakened with increasing doping. However, a detailed binding energy dependent analysis of the SB at x=0.07x=0.07 does not appear to support the former interpretation, leaving the latter as a more plausible candidate, despite a challenge in quantitatively linking the doping dependences of the SB intensity and the magnitude of the lattice distortion. Our finding highlights the necessity of a careful and global consideration of the inherent structural complications for correctly understanding the cuprate Fermiology and its microscopic implication.Comment: Note the revised conclusion and author list; To appear in New J. Phy

    Hydrodynamic characteristics of wing-in-ground effect oscillating hydrofoilon power extraction performance

    Get PDF
    The energy contained in the tidal motion of the seas and oceans has the potential to be a significant source ofrenewable energy. The oscillating hydrofoil current-energy turbine has a good performance to extract energyfrom the coupling of its heaving and pitching motions. In the present study, the wing-in-ground (WIG) effect hasbeen considered to improve the power-extraction performance of the oscillating hydrofoils. The overset grid inthe commercial computational fluid dynamic (CFD) software STAR CCM+ is applied to study the flapping hydrofoilwith dynamic WIG effect between two hydrofoils. The simulation results show that the WIG effect cangreatly improve the power extraction performance of the flapping hydrofoil. The WIG effect is asymmetric overthe course of the foil moving toward or leaving from the symmetry plane. The distance of the gap has a majorinfluence on the hydrodynamic performances of the flapping hydrofoil. For a moderate gap, the positive pressureon the lower surface enhances as the hydrofoil departs from the symmetry plane and causes an improvement oflift and moment coefficients. As the gap decreases further, the increasing negative pressure between the leadingedge and the symmetry plane plays an essential role improving the power extraction as the hydrofoil approachesthe symmetry plane. Compared to the case without the WIG effect, the power-extraction efficiency has anincrement of 16.34% in the present study
    corecore