11,206 research outputs found

    Inhibitory Effect of Berberine on Zeste Homolog 2 (Ezh2) Enhancement in Human Esophageal Cell Lines

    Get PDF
    Purpose: To investigate the inhibitory effect of berberine treatment on enhancement of zeste of homolog 2 (Ezh2) expressions in KYSE450 human esophageal cancer cells.Methods: Transwell motility chambers were used to analyze cell migration and invasion. Bio-Rad protein assay was used for the determination of protein concentration. Chemiluminescence with ECL system was employed for the detection of protein bands as per the manufacturer’s protocol. Staining was carried out with Alexa-Fluor 647 mouse anti-BrdU antibody. Flow cytometry was performed after adding DAPI. Annexin-V/DAPI staining and flow cytometry were used for the quantification of apoptotic cell death. Total RNA was isolated from KYSE450 cells using an RNA isolation kit.Results: Berberine-induced inhibition of Ezh2 expression led to inhibition of cell proliferation by G1 phase cell cycle arrest and induced anti-invasive properties of KYSE450 cells in Boyden chamber assays. There was 92 % reduction in invasive tendency of KYSE450 cells following treatment with berberine. Histone  methylation inhibitor, 3-deazaneoplanocin A (DZNep), also led to a similar effect on cell proliferation of KYSE450 cells. Berberine treatment also resulted in strong transcriptional reduction of the AXL receptor kinase. The results of qRT-PCR and FACS analyses showed significant inhibition of AXL mRNA and protein expression in KYSE450 carcinoma cells after treatment with berberine.Conclusion: Berberine may be an effective therapeutic agent in the treatment of esophageal carcinoma.Keywords: Berberine, Histone methylation inhibitor, Anti-invasive, Cell proliferation, Human Esophageal cance

    Total Synthesis of Limaol

    Get PDF
    A nonthermodynamic array of four skipped methylene substituents on the hydrophobic tail renders limaol, a C40-polyketide of marine origin, unique in structural terms. This conspicuous segment was assembled by a two-directional approach and finally coupled to the polyether domain by an allyl/alkenyl Stille reaction under neutral conditions. The core region itself was prepared via a 3,3â€Č-dibromo-BINOL-catalyzed asymmetric propargylation, a gold-catalyzed spirocyclization, and introduction of the southern sector via substrate-controlled allylation as the key steps

    iTag: Incentive-Based Tagging

    Get PDF
    In social tagging systems, such as Delicious1 and Flickr2, users are allowed to annotate resources (e.g., Web URLs and images) with textual descriptions called tags. Tags have proven to be invaluable building blocks in algorithms for searching, mining and recommending resources. In practice, however, not all resources receive the same attention from users, and as a result, most tags are added to the few highly-popular resources, while most of the resources receive few tags. Crucially, this incomplete tagging on resources can severely affect the effectiveness of all tagging applications. We present iTag, an incentive-based tagging system, which aims at improving tagging quality of resources, by incentivizing taggers under budget constraints. Our system is built upon traditional crowdsourcing systems such as Amazon Mechanical Turk (MTurk). In our demonstration, we will show how our system allows users to use simple but powerful strategies to significantly improve the tagging quality of resources.published_or_final_versio

    Properties of Galaxy Groups in the SDSS: II.- AGN Feedback and Star Formation Truncation

    Get PDF
    Successfully reproducing the galaxy luminosity function and the bimodality in the galaxy distribution requires a mechanism that can truncate star formation in massive haloes. Current models of galaxy formation consider two such truncation mechanisms: strangulation, which acts on satellite galaxies, and AGN feedback, which predominantly affects central galaxies. The efficiencies of these processes set the blue fraction of galaxies as function of galaxy luminosity and halo mass. In this paper we use a galaxy group catalogue extracted from the Sloan Digital Sky Survey (SDSS) to determine these fractions. To demonstrate the potential power of this data as a benchmark for galaxy formation models, we compare the results to the semi-analytical model for galaxy formation of Croton et al. (2006). Although this model accurately fits the global statistics of the galaxy population, as well as the shape of the conditional luminosity function, there are significant discrepancies when the blue fraction of galaxies as a function of mass and luminosity is compared between the observations and the model. In particular, the model predicts (i) too many faint satellite galaxies in massive haloes, (ii) a blue fraction of satellites that is much too low, and (iii) a blue fraction of centrals that is too high and with an inverted luminosity dependence. In the same order, we argue that these discrepancies owe to (i) the neglect of tidal stripping in the semi-analytical model, (ii) the oversimplified treatment of strangulation, and (iii) improper modeling of dust extinction and/or AGN feedback. The data presented here will prove useful to test and calibrate future models of galaxy formation and in particular to discriminate between various models for AGN feedback and other star formation truncation mechanisms.Comment: 16 pages, 5 figures, submitted to MNRA

    Nucleon Spin in QCD: Old Crisis and New Resolution

    Full text link
    We discuss the shortfalls of existing resolutions of the long-standing gauge invariance problem of the canonical decomposition of the nucleon spin to the spin and angular momentum of quarks and gluons. We provide two logically flawless expressions of nucleon spin which have different physical meanings, using the gauge independent Abelian decomposition. The first one is based on the assumption that all gluons (binding and valence gluons) contribute to the nucleon spin, but the second one is based on the assumption that only the binding gluons (and the quarks) contribute to it. We propose the second expression to be the physically correct one

    Two-dimensional tetramer-cuprate Na5RbCu4(AsO4)4Cl2: phase transitions and AFMorder as seen by 87Rb NMR

    Full text link
    We report the Rb nuclear magnetic resonance (NMR) results in a recently synthesized Na5RbCu4(AsO4)Cl2. This complex novel two-dimensional (2D) cuprate is an unique magnetic material, which contains layers of coupled Cu4O4 tetramers. In zero applied magnetic field, it orders antiferromagnetically via a second-order low-entropy phase transition at TN = 15(1) K. We characterise the ordered state by 87Rb NMR, and suggest for it a noncollinear rather than collinear arrangement of spins. We discuss the properties of Rb nuclear site and point out the new structural phase transition(s) around 74 K and 110 K.Comment: 2 pages, 2 figures, Proceedings of SCES'05, Vienna 200

    Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis

    Get PDF
    Miniaturized gas chromatography (GC) systems can provide fast, quantitative analysis of chemical vapors in an ultrasmall package. We describe a chemical sensor technology based on resonant nanoelectromechanical systems (NEMS) mass detectors that provides the speed, sensitivity, specificity, and size required by the microscale GC paradigm. Such NEMS sensors have demonstrated detection of subparts per billion (ppb) concentrations of a phosphonate analyte. By combining two channels of NEMS detection with an ultrafast GC front-end, chromatographic analysis of 13 chemicals was performed within a 5 s time window
    • 

    corecore