19,438 research outputs found
Accurate determination of the Lagrangian bias for the dark matter halos
We use a new method, the cross power spectrum between the linear density
field and the halo number density field, to measure the Lagrangian bias for
dark matter halos. The method has several important advantages over the
conventional correlation function analysis. By applying this method to a set of
high-resolution simulations of 256^3 particles, we have accurately determined
the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models
with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our
result for massive halos with ( is a characteristic non-linear
mass) is in very good agreement with the analytical formula of Mo & White for
the Lagrangian bias, but the analytical formula significantly underestimates
the Lagrangian clustering for the less massive halos $M < M_*. Our simulation
result however can be satisfactorily described, with an accuracy better than
15%, by the fitting formula of Jing for Eulerian bias under the assumption that
the Lagrangian clustering and the Eulerian clustering are related with a linear
mapping. It implies that it is the failure of the Press-Schechter theories for
describing the formation of small halos that leads to the inaccuracy of the Mo
& White formula for the Eulerian bias. The non-linear mapping between the
Lagrangian clustering and the Eulerian clustering, which was speculated as
another possible cause for the inaccuracy of the Mo & White formula, must at
most have a second-order effect. Our result indicates that the halo formation
model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages
with 2 figures include
Environmental Dependence of Cold Dark Matter Halo Formation
We use a high-resolution -body simulation to study how the formation of
cold dark matter (CDM) halos is affected by their environments, and how such
environmental effects produce the age-dependence of halo clustering observed in
recent -body simulations. We estimate, for each halo selected at redshift
, an `initial' mass defined to be the mass enclosed by the
largest sphere which contains the initial barycenter of the halo particles and
within which the mean linear density is equal to the critical value for
spherical collapse at . For halos of a given final mass, , the
ratio has large scatter, and the scatter is larger for
halos of lower final masses. Halos that form earlier on average have larger
, and so correspond to higher peaks in the initial density
field than their final masses imply. Old halos are more strongly clustered than
younger ones of the same mass because their initial masses are larger. The
age-dependence of clustering for low-mass halos is entirely due to the
difference in the initial/final mass ratio. Low-mass old halos are almost
always located in the vicinity of big structures, and their old ages are
largely due to the fact that their mass accretions are suppressed by the hot
environments produced by the tidal fields of the larger structure. The
age-dependence of clustering is weaker for more massive halos because the
heating by large-scale tidal fields is less important.Comment: 18 pages,19 figures, accepted by MNRA
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Power Spectrum Analysis of the 2dF QSO Sample Revisited
We revisit the power spectrum analysis of the complete sample of the two
degree field (2dF) QSO redshift (2QZ) survey, as a complementary test of the
work by Outram et al. (2003). A power spectrum consistent with that of the 2QZ
group is obtained. Differently from their approach, fitting of the power
spectrum is investigated incorporating the nonlinear effects, the geometric
distortion and the light-cone effect. It is shown that the QSO power spectrum
is consistent with the cold dark matter (CDM) model with the matter
density parameter . Our constraint on the density
parameter is rather weaker than that of the 2QZ group. We also show that the
constraint slightly depends on the equation of state parameter of the dark
energy. The constraint on from the QSO power spectrum is demonstrated,
though it is not very tight.Comment: 15 pages, 5 figures, accepted for publication in the Astrophysical
Journa
Scaling properties of the redshift power spectrum: theoretical models
We report the results of an analysis of the redshift power spectrum
in three typical Cold Dark Matter (CDM) cosmological models, where
is the cosine of the angle between the wave vector and the line-of-sight.
Two distinct biased tracers derived from the primordial density peaks of
Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are
considered in addition to the pure dark matter models. Based on a large set of
high resolution simulations, we have measured the redshift power spectrum for
the three tracers from the linear to the nonlinear regime. We investigate the
validity of the relation - guessed from linear theory - in the nonlinear regime
where
is the real space power spectrum, and equals . The
damping function which should generally depend on , , and
, is found to be a function of only one variable
. This scaling behavior extends into the nonlinear regime,
while can be accurately expressed as a Lorentz function - well known from
linear theory - for values . The difference between
and the pairwise velocity dispersion defined by the 3-D peculiar velocity of
the simulations (taking ) is about 15%. Therefore is a
good indicator of the pairwise velocity dispersion. The exact functional form
of depends on the cosmological model and on the bias scheme. We have given
an accurate fitting formula for the functional form of for the models
studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include
The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall
We study the reliability of the reconstruction method which uses a modelling
of the redshift distortions of the two-point correlation function to estimate
the pairwise peculiar velocity dispersion of galaxies. In particular, the
dependence of this quantity on different models for the infall velocity is
examined for the Las Campanas Redshift Survey. We make extensive use of
numerical simulations and of mock catalogs derived from them to discuss the
effect of a self-similar infall model, of zero infall, and of the real infall
taken from the simulation. The implications for two recent discrepant
determinations of the pairwise velocity dispersion for this survey are
discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8
pages with 2 figures include
Confronting cold dark matter cosmologies with strong clustering of Lyman break galaxies at
We perform a detailed analysis of the statistical significance of a
concentration of Lyman break galaxies at recently discovered by
Steidel et al. (1997), using a series of N-body simulations with
particles in a (100\himpc)^3 comoving box. While the observed number density
of Lyman break galaxies at implies that they correspond to systems
with dark matter halos of \simlt 10^{12}M_\odot, the resulting clustering of
such objects on average is not strong enough to be reconciled with the
concentration if it is fairly common; we predict one similar concentration
approximately per () fields in three representative cold dark matter
models. Considering the current observational uncertainty of the frequency of
such clustering at , it would be premature to rule out the models, but
the future spectroscopic surveys in a dozen fields could definitely challenge
all the existing cosmological models a posteriori fitted to the universe.Comment: the final version which matchs that published in ApJ Letters (Feb
1998); compared with the previous versions, the predictions for the SCDM
model are slightly changed; Latex, 11 pages, including 3 ps figure
The cross-correlation between galaxies of different luminosities and Colors
We study the cross-correlation between galaxies of different luminosities and
colors, using a sample selected from the SDSS Dr 4. Galaxies are divided into 6
samples according to luminosity, and each of these samples is divided into red
and blue subsamples. Projected auto-correlation and cross-correlation is
estimated for these subsample. At projected separations r_p > 1\mpch, all
correlation functions are roughly parallel, although the correlation amplitude
depends systematically on luminosity and color. On r_p < 1\mpch, the auto- and
cross-correlation functions of red galaxies are significantly enhanced relative
to the corresponding power laws obtained on larger scales. Such enhancement is
absent for blue galaxies and in the cross-correlation between red and blue
galaxies. We esimate the relative bias factor on scales r > 1\mpch for each
subsample using its auto-correlation function and cross-correlation functions.
The relative bias factors obtained from different methods are similar. For blue
galaxies the luminosity-dependence of the relative bias is strong over the
luminosity range probed (-23.0<M_r < -18.0),but for red galaxies the dependence
is weaker and becomes insignificant for luminosities below L^*. To examine
whether a significant stochastic/nonlinear component exists in the bias
relation, we study the ratio R_ij= W_{ii}W_{jj}/W_{ij}^2, where W_{ij} is the
projected correlation between subsample i and j. We find that the values of
R_ij are all consistent with 1 for all-all, red-red and blue-blue samples,
however significantly larger than 1 for red-blue samples. For faint red - faint
blue samples the values of R_{ij} are as high as ~ 2 on small scales r_p < 1
\mpch and decrease with increasing r_p.Comment: 25 pages, 18 figures, Accepted for publication in Ap
Roles of reading anxiety and working memory in reading comprehension in English as a second language
This study investigated the relationships between affective and cognitive factors and reading comprehension in English as a second language (ESL). Specifically, we evaluated the contributions of reading anxiety and verbal working memory to ESL reading comprehension in Chinese students. A total of 105 Chinese ESL undergraduates were included. Structural equation modeling results showed that reading anxiety, represented by reading trait and state anxiety, and verbal working memory were unique predictors of ESL reading comprehension. In addition, there was no significant reading anxiety Ă working memory interaction effect. Mediation analyses revealed that reading anxiety partially mediated the relationship between verbal working memory and ESL reading comprehension. These results highlight the importance of affective and cognitive factors in predicting ESL reading comprehension and shed light on the methods in enhancing ESL learning
- âŠ