1,849 research outputs found

    Off-shell photon distribution amplitudes in the low-energy effective theory of QCD

    Get PDF
    Based on the principle of the Lorentz covariance the transition matrix elements from an off-shell photon state to the vacuum are decomposed into the light-cone photon DAs, in which only two transversal DAs survive in the on-shell limit. The eight off-shell light-cone photon distribution amplitudes (DAs) corresponding to chiral-odd and chiral-even up to twist-four and the corresponding coupling constants are studied systematically in the instanton vacuum model of quantum chromodynamics (QCD). The various individual photon DA multiplied by its corresponding coupling constant is expressed in terms of the correlation functions, which are connected with the spectral densities of an effective quark propagator, and then evaluated in the low-energy effective theory derived from the instanton vacuum model of QCD. The explicit analytical expressions and the numerical results for the photon DAs and their coupling constants are given

    Temperature Dependence of the Effective Bag Constant and the Radius of a Nucleon in the Global Color Symmetry Model of QCD

    Full text link
    We study the temperature dependence of the effective bag constant, the mass, and the radius of a nucleon in the formalism of the simple global color symmetry model in the Dyson-Schwinger equation approach of QCD with a Gaussian-type effective gluon propagator. We obtain that, as the temperature is lower than a critical value, the effective bag constant and the mass decrease and the radius increases with the temperature increasing. As the critical temperature is reached, the effective bag constant and the mass vanish and the radius tends to infinity. At the same time, the chiral quark condensate disappears. These phenomena indicate that the deconfinement and the chiral symmetry restoration phase transitions can take place at high temperature. The dependence of the critical temperature on the interaction strength parameter in the effective gluon propagator of the approach is given.Comment: 10 pages, 9 figure

    Generation of Two-Flavor Vortex Atom Laser from a Five-State Medium

    Full text link
    Two-flavor atom laser in a vortex state is obtained and analyzed via electromagnetically induced transparency (EIT) technique in a five-level MM type system by using two probe lights with ±z\pm z-directional orbital angular momentum ±l\pm l\hbar, respectively. Together with the original transfer technique of quantum states from light to matter waves, the present result can be extended to generate continuous two-flavor vortex atom laser with non-classical atoms.Comment: 5 pages, 1 figure; The previous version (v2) is a wrong one; this is the published versio

    Dynamics of Domain Wall in a Biaxial Ferromagnet With Spin-torque

    Full text link
    The dynamics of the domain wall (DW) in a biaxial ferromagnet interacting with a spin-polarized current are described by sine-gordon (SG) equation coupled with Gilbert damping term in this paper. Within our frame-work of this model, we obtain a threshold of the current in the motion of a single DW with the perturbation theory on kink soliton solution to the corresponding ferromagnetic system, and the threshold is shown to be dependent on the Gilbert damping term. Also, the motion properties of the DW are discussed for the zero- and nonzero-damping cases, which shows that our theory to describe the dynamics of the DW are self-consistent.Comment: 7pages, 3figure

    Tree of Uncertain Thoughts Reasoning for Large Language Models

    Full text link
    While the recently introduced Tree of Thoughts (ToT) has heralded advancements in allowing Large Language Models (LLMs) to reason through foresight and backtracking for global decision-making, it has overlooked the inherent local uncertainties in intermediate decision points or "thoughts". These local uncertainties, intrinsic to LLMs given their potential for diverse responses, remain a significant concern in the reasoning process. Addressing this pivotal gap, we introduce the Tree of Uncertain Thoughts (TouT) - a reasoning framework tailored for LLMs. Our TouT effectively leverages Monte Carlo Dropout to quantify uncertainty scores associated with LLMs' diverse local responses at these intermediate steps. By marrying this local uncertainty quantification with global search algorithms, TouT enhances the model's precision in response generation. We substantiate our approach with rigorous experiments on two demanding planning tasks: Game of 24 and Mini Crosswords. The empirical evidence underscores TouT's superiority over both ToT and chain-of-thought prompting methods

    Performance of electronic dispersion compensator for 10Gb/s multimode fiber links

    Get PDF
    In high-speed optical links, electronic compensation circuits can be utilized to greatly improve the data transmission performance limited by fiber dispersion. In this paper, we develop a full link model, including multimode fibers, optical/electronics/optical components, clock-and-data recovery and electronic compensation circuits. The performance of various electronic compensation techniques, such as feed-forward equalizer and decision feedback equalizer for optical multimode fiber is investigated and numerically evaluated. Finally, a comparison of the performance of each compensation techniques and a proposal of optimal equalizer circuit implementation, achieving a 10-Gb/s transmission over 1-km standard multimode fiber are presented
    corecore