86 research outputs found

    Uridylation and adenylation of RNAs.

    Get PDF
    The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area

    Author Correction: The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs.

    Get PDF
    The original version of this Article contained an error in the spelling of the author Beixin Mo, which was incorrectly given as Beixing Mo. This has now been corrected in both the PDF and HTML versions of the Article

    Uridylation and adenylation of RNAs

    Get PDF
    The posttranscriptional addition of nontemplated nucleotides to the 3′ ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3′ ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area

    Trip to ER: MicroRNA-mediated translational repression in plants.

    No full text
    miRNAs elicit gene silencing at the post-transcriptional level by several modes of action: translational repression, mRNA decay, and mRNA cleavage. Studies in animals have suggested that translational repression occurs at early steps of translation initiation, which can be followed by deadenylation and mRNA decay. Plant miRNAs were originally thought to solely participate in mRNA cleavage, but increasing evidence has indicated that they are also commonly involved in translational inhibition. Here we discuss recent findings on miRNA-mediated translational repression in plants. The identification of AMP1 in Arabidopsis as a protein required for the translational repression but not the mRNA cleavage activity of miRNAs links miRNA-based translational repression to the endoplasmic reticulum (ER). Future work is required to further elucidate the miRNA machinery on the ER

    Integrated Analysis of Transcriptome and Small RNAome Reveals the Regulatory Network for Rapid Growth in Mikania micrantha

    No full text
    M. micrantha has caused huge ecological damage and economic losses worldwide due to its rapid growth and serious invasion. However, the underlying molecular mechanisms of its rapid growth and environmental adaption remain unclear. Here, we performed transcriptome and small RNA sequencing with five tissues of M. micrantha to dissect miRNA-mediated regulation in M. micrantha. WGCNA and GO enrichment analysis of transcriptome identified the gene association patterns and potential key regulatory genes for plant growth in each tissue. The genes highly correlated with leaf and stem tissues were mainly involved in the chlorophyll synthesis, response to auxin, the CAM pathway and other photosynthesis-related processes, which promoted the fast growth of M. micrantha. Importantly, we identified 350 conserved and 192 novel miRNAs, many of which displayed differential expression patterns among tissues. PsRNA target prediction analysis uncovered target genes of both conserved and novel miRNAs, including GRFs and TCPs, which were essential for plant growth and development. Further analysis revealed that miRNAs contributed to the regulation of tissue-specific gene expression in M. micrantha, such as mmi-miR396 and mmi-miR319. Taken together, our study uncovered the miRNA-mRNA regulatory networks and the potential vital roles of miRNAs in modulating the rapid growth of M. micrantha

    Trip to ER

    No full text

    Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources

    No full text
    Standardized naming systems are essential to integrate and unify distinct research fields, and to link multi-species data within and across kingdoms. We conducted a comprehensive survey of cytoplasmic ribosomal proteins (CRPs) in the dicot model Arabidopsis thaliana and the monocot model rice, noting that the standardized naming system has not been widely adopted in the plant community. We generated a database linking the old classical names to their updated and compliant names. We also explored the sequences, molecular evolution, and structural and functional characteristics of all plant CRP families, emphasizing evolutionarily conserved and plant-specific features through cross-kingdom comparisons. Unlike fungal CRP paralogs that were mainly created by whole-genome duplication (WGD) or retroposition under a concerted evolution mode, plant CRP genes evolved primarily through both WGD and tandem duplications in a rapid birth-and-death process. We also provide a web-based resource (http://www.plantcrp.cn/) with the aim of sharing the latest knowledge on plant CRPs and facilitating the continued development of a standardized framework across the entire community
    • …
    corecore