129 research outputs found

    Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk

    Get PDF
    Breast cancer is a major cause of cancer-related deaths in women. It is known that obesity is one of the risk factors of breast cancer. The subject of our interest was genes: FTO, MC4R and NRXN3–associated with obesity. In this study we have analyzed frequencies of genomic variants in FTO, MC4R and NRXN3 in the group of 134 breast cancer patients. We genotyped two polymorphic sites located in FTO gene (rs993909 and rs9930506), one polymorphic site of MC4R gene (rs17782313) and one polymorphic site of NRXN3 gene (rs10146997). Our hypothesis was that above mentioned SNPs could participate in carcinogenesis. Our research has showed that only rs10146997 was significantly (P = 0.0445) associated with higher risk of breast cancer development (OR = 0.66 (95% CI 0.44–0.99)). Moreover, G allele carriers in rs10146997 of the NRXN3 gene were the youngest patients at onset of breast cancer. On the basis of our research we suggest that further functional may elucidate the role of genomic variation in breast cancer development

    Association Between CNDP1 Genotype and Diabetic Nephropathy Is Sex Specific

    Get PDF
    OBJECTIVE-The 5-5 homozygous CNDP1 (carnosinase) genotype is associated with a reduced risk of diabetic nephropathy. We investigated whether this association is sex specific and independent of susceptibility for type 2 diabetes. RESEARCH DESIGN AND METHODS-Three separate groups of 114, 90, and 66 patients with type 2 diabetes and diabetic nephropathy were included in this study and compared with 93 patients with type 2 diabetes for >15 years without diabetic nephropathy and 472 population control subjects. The diabetes control group was used to determine an association in the three patient groups separately, and the population control group was used to estimate the genotype risk [odds ratio (CI)] for the population in a pooled analysis. The population control subjects were also compared with 562 patients with type 2 diabetes without diabetic nephropathy to determine whether the association was independent of type 2 diabetes. The CNDP1 genotype was determined by fragment analysis after PCR amplification. RESULTS-The frequency of the 5-5 homozygous genotype was 28, 36, and 41% in the three diabetic nephropathy patient groups and 43 and 42% in the diabetic and population control subjects, respectively. The 5-5 homozygous genotype occurred significantly less frequently in women in all three patient groups compared with diabetic control subjects. The genotype risk for the population was estimated to be 0.5 (0.30-0.68) in women and 1.2 (0.77-1.69) in men. The 562 patients with type 2 diabetes without diabetic nephropathy did not differ from the general population (P = 0.23). CONCLUSIONS-This study suggests that the association between the CNDP1 gene and diabetic nephropathy is sex specific and independent of susceptibility for type 2 diabetes. Diabetes 59:1555-1559, 201

    Catalytic C(sp3)-H bond activation in tertiary alkylamines.

    Get PDF
    The development of robust catalytic methods to assemble tertiary alkylamines provides a continual challenge to chemical synthesis. In this regard, transformation of a traditionally unreactive C-H bond, proximal to the nitrogen atom, into a versatile chemical entity would be a powerful strategy for introducing functional complexity to tertiary alkylamines. A practical and selective metal-catalysed C(sp3)-H activation facilitated by the tertiary alkylamine functionality, however, remains an unsolved problem. Here, we report a Pd(II)-catalysed protocol that appends arene feedstocks to tertiary alkylamines via C(sp3)-H functionalization. A simple ligand for Pd(II) orchestrates the C-H activation step in favour of deleterious pathways. The reaction can use both simple and complex starting materials to produce a range of multifaceted γ-aryl tertiary alkylamines and can be rendered enantioselective. The enabling features of this transformation should be attractive to practitioners of synthetic and medicinal chemistry as well as in other areas that use biologically active alkylamines

    Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres). In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus <it>Mus </it>which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres.</p> <p>Results</p> <p>The chromosomal distribution of rDNA clusters was determined by <it>in situ </it>hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus <it>Mus</it>: i) rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii) a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii) 24% of the observed breakpoints mapped near an rDNA cluster, and iv) a substantial rate of rDNA cluster change (insertion, deletion) also occurred in the absence of chromosomal rearrangements.</p> <p>Conclusions</p> <p>This study on the dynamics of rDNA clusters within the genus <it>Mus </it>has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus <it>Mus</it>, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome repatterning observed in this group. However, the elevated rate of rDNA change observed in the chromosomally invariant clade indicates that the presence of these sequences is insufficient to lead to genome instability. In agreement with recent studies, these results suggest that additional factors such as modifications of the epigenetic state of DNA may be required to trigger evolutionary plasticity.</p

    Common Variants of Inflammatory Cytokine Genes Are Associated with Risk of Nephropathy in Type 2 Diabetes among Asian Indians

    Get PDF
    BACKGROUND: Inflammatory cytokine genes have been proposed as good candidate genes for conferring susceptibility to diabetic nephropathy. In the present study, we examined the combined effect of multiple alleles of pro inflammatory cytokine genes for determining the risk of nephropathy in type 2 diabetic patients. METHODOLOGY/PRINCIPAL FINDINGS: Eight single nucleotide polymorphisms (SNPs) of pro-inflammatory cytokine genes (CCL2, TGFB1, IL8, CCR5, and MMP9) were genotyped in two independently ascertained type 2 diabetic cohorts with (DN) and without nephropathy (DM); consisting of patients from North India (n = 495) and South India (n = 188). Genotyping was carried out using PCR, allele specific oligonucleotide-PCR (ASO-PCR), PCR-RFLP and TaqMan allelic discrimination assays and the gene-gene interaction among genetic variants were determined by multi dimensional reduction (MDR) software. Serum high sensitive CRP (hs-CRP) levels were measured by ELISA. The hs-CRP levels were significantly higher in DN as compared to the DM group (p<0.05). The CCL2, IL8, CCR5 and MMP9 polymorphisms were found to be associated with the risk of diabetic nephropathy. Frequency of CCL2 II, IL8 -251AA, CCR5 59029AA and MMP9 279Gln/Gln genotypes were significantly higher in DN than in DM group (p<0.05) and associated with an increased risk of nephropathy in both North and South Indian cohorts. CCR5 DD and IL8 -251AA genotypes were more prevalent in North Indian DN group only. The co-occurrence of risk associated genotypes (II, -2518GG (CCL2), DD (CCR5) and 279Gln/Gln (MMP9) conferred a tenfold increased risk of nephropathy among type 2 diabetics (p<0.0002). CONCLUSION: The present study highlights that common variants of inflammatory cytokine genes exert a modest effect on risk of DN and a combination of risk alleles confer a substantial increased risk of nephropathy in type 2 diabetes among Asian Indians

    Exclusive dielectron production in ultraperipheral Pb+Pb collisions at √sNN = 5.02 TeV with ATLAS

    Get PDF
    Exclusive production of dielectron pairs, γγ → e+e−, is studied using Lint = 1.72 nb−1 of data from ultraperipheral collisions of lead nuclei at √sNN = 5.02 TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon–photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum peT &gt; 2.5 GeV, absolute electron pseudorapidity |ηe| &lt; 2.5, dielectron invariant mass mee &gt; 5 GeV, and dielectron transverse momentum peeT &lt; 2 GeV. Differential cross-sections are measured as a function of mee, average peT , absolute dielectron rapidity |yee|, and scattering angle in the dielectron rest frame, |cos θ*|, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be 215±1(stat.)+23−20(syst.)±4(lumi.) μb. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs STARLIGHT and SUPERCHIC, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high |yee| and |cos θ*| values

    Efficient coding theory of dynamic attentional modulation

    No full text
    Activity of sensory neurons is driven not only by external stimuli but also by feedback signals from higher brain areas. Attention is one particularly important internal signal whose presumed role is to modulate sensory representations such that they only encode information currently relevant to the organism at minimal cost. This hypothesis has, however, not yet been expressed in a normative computational framework. Here, by building on normative principles of probabilistic inference and efficient coding, we developed a model of dynamic population coding in the visual cortex. By continuously adapting the sensory code to changing demands of the perceptual observer, an attention-like modulation emerges. This modulation can dramatically reduce the amount of neural activity without deteriorating the accuracy of task-specific inferences. Our results suggest that a range of seemingly disparate cortical phenomena such as intrinsic gain modulation, attention-related tuning modulation, and response variability could be manifestations of the same underlying principles, which combine efficient sensory coding with optimal probabilistic inference in dynamic environments
    corecore