1,673 research outputs found
Asymmetric Fermi superfluid with different atomic species in a harmonic trap
We study the dilute fermion gas with pairing between two species and unequal
concentrations in a harmonic trap using the mean field theory and the local
density approximation. We found that the system can exhibit a superfluid shell
structure sandwiched by the normal fermions. This superfluid shell structure
occurs if the mass ratio is larger then certain critical value which increases
from the weak-coupling BCS region to the strong-coupling BEC side. In the
strong coupling BEC regime, the radii of superfluid phase are less sensitive to
the mass ratios and are similar to the case of pairing with equal masses.
However, the lighter leftover fermions are easier to mix with the superfluid
core than the heavier ones. A partially polarized superfluid can be found if
the majority fermions are lighter, whereas phase separation is still found if
they are heavier.Comment: 12 pages, 7 figure
Larkin-Ovchinnikov-Fulde-Ferrell phase in the superconductor (TMTSF)2ClO4: Theory versus experiment
We consider a formation of the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase
in a quasi-one-dimensional (Q1D) conductor in a magnetic field, parallel to its
conducting chains, where we take into account both the paramagnetic
spin-splitting and orbital destructive effects against superconductivity. We
show that, due to a relative weakness of the orbital effects in a Q1D case, the
LOFF phase appears in (TMTSF)ClO superconductor for real values of its
Q1D band parameters. We compare our theoretical calculations with the recent
experimental data by Y. Maeno's group [S. Yonezawa et al., Phys. Rev. Lett.
\textbf{100}, 117002 (2008)] and show that there is a good qualitative and
quantitative agreement between the theory and experimental data.Comment: 4 pages, 1 figur
Splitting of a doubly quantized vortex through intertwining in Bose-Einstein condensates
The stability of doubly quantized vortices in dilute Bose-Einstein
condensates of 23Na is examined at zero temperature. The eigenmode spectrum of
the Bogoliubov equations for a harmonically trapped cigar-shaped condensate is
computed and it is found that the doubly quantized vortex is spectrally
unstable towards dissection into two singly quantized vortices. By numerically
solving the full three-dimensional time-dependent Gross-Pitaevskii equation, it
is found that the two singly quantized vortices intertwine before decaying.
This work provides an interpretation of recent experiments [A. E. Leanhardt et
al. Phys. Rev. Lett. 89, 190403 (2002)].Comment: 4 pages, 3 figures (to be published in PRA
An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal
The Avogadro constant links the atomic and the macroscopic properties of
matter. Since the molar Planck constant is well known via the measurement of
the Rydberg constant, it is also closely related to the Planck constant. In
addition, its accurate determination is of paramount importance for a
definition of the kilogram in terms of a fundamental constant. We describe a
new approach for its determination by "counting" the atoms in 1 kg
single-crystal spheres, which are highly enriched with the 28Si isotope. It
enabled isotope dilution mass spectroscopy to determine the molar mass of the
silicon crystal with unprecedented accuracy. The value obtained, 6.02214084(18)
x 10^23 mol^-1, is the most accurate input datum for a new definition of the
kilogram.Comment: 4 pages, 5 figures, 3 table
DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose
Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions
Analytic Representation of The Dirac Equation
In this paper we construct an analytical separation (diagonalization) of the
full (minimal coupling) Dirac equation into particle and antiparticle
components. The diagonalization is analytic in that it is achieved without
transforming the wave functions, as is done by the Foldy-Wouthuysen method, and
reveals the nonlocal time behavior of the particle-antiparticle relationship.
We interpret the zitterbewegung and the result that a velocity measurement (of
a Dirac particle) at any instant in time is, as reflections of the fact that
the Dirac equation makes a spatially extended particle appear as a point in the
present by forcing it to oscillate between the past and future at speed c. From
this we infer that, although the form of the Dirac equation serves to make
space and time appear on an equal footing mathematically, it is clear that they
are still not on an equal footing from a physical point of view. On the other
hand, the Foldy-Wouthuysen transformation, which connects the Dirac and square
root operator, is unitary. Reflection on these results suggests that a more
refined notion (than that of unitary equivalence) may be required for physical
systems
MIR376A is a regulator of starvation-induced autophagy
Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration.
Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR.
Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role.
Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy
Diffused vorticity approach to the oscillations of a rotating Bose-Einstein condensate confined in a harmonic plus quartic trap
The collective modes of a rotating Bose-Einstein condensate confined in an
attractive quadratic plus quartic trap are investigated. Assuming the presence
of a large number of vortices we apply the diffused vorticity approach to the
system. We then use the sum rule technique for the calculation of collective
frequencies, comparing the results with the numerical solution of the
linearized hydrodynamic equations. Numerical solutions also show the existence
of low-frequency multipole modes which are interpreted as vortex oscillations.Comment: 10 pages, 4 figure
- …