1,571 research outputs found

    Topological Structure of a Vortex in Fulde-Ferrell-Larkin-Ovchinnikov State

    Full text link
    We find theoretically that the vortex core in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is quite different from the ordinary core by a simple topological reason. The intersection point of a vortex and nodal plane of the FFLO state empties the excess spins. This leads to observable consequences in the spatial structure of the spontaneous magnetization. We analyze this topological structure based on the low lying excitation spectrum by solving microscopic Bogoliubov-de Gennes equation to clarify its physical origin.Comment: 4 pages, 4 figure

    Generic Phase Diagram of Fermion Superfluids with Population Imbalance

    Get PDF
    It is shown by microscopic calculations for trapped imbalanced Fermi superfluids that the gap function has always sign changes, i.e., the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state like, up to a critical imbalance PcP_c, beyond which normal state becomes stable, at temperature T=0. A phase diagram is constructed in TT vs PP, where the BCS state without sign change is stable only at T≠0T\neq 0. We reproduce the observed bimodality in the density profile to identify its origin and evaluate PcP_c as functions of TT and the coupling strength. These dependencies match with the recent experiments.Comment: 5 pages, 5 figures, replaced by the version to appear in PR

    Asymmetric Fermi superfluid with different atomic species in a harmonic trap

    Full text link
    We study the dilute fermion gas with pairing between two species and unequal concentrations in a harmonic trap using the mean field theory and the local density approximation. We found that the system can exhibit a superfluid shell structure sandwiched by the normal fermions. This superfluid shell structure occurs if the mass ratio is larger then certain critical value which increases from the weak-coupling BCS region to the strong-coupling BEC side. In the strong coupling BEC regime, the radii of superfluid phase are less sensitive to the mass ratios and are similar to the case of pairing with equal masses. However, the lighter leftover fermions are easier to mix with the superfluid core than the heavier ones. A partially polarized superfluid can be found if the majority fermions are lighter, whereas phase separation is still found if they are heavier.Comment: 12 pages, 7 figure

    Larkin-Ovchinnikov-Fulde-Ferrell phase in the superconductor (TMTSF)2ClO4: Theory versus experiment

    Full text link
    We consider a formation of the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase in a quasi-one-dimensional (Q1D) conductor in a magnetic field, parallel to its conducting chains, where we take into account both the paramagnetic spin-splitting and orbital destructive effects against superconductivity. We show that, due to a relative weakness of the orbital effects in a Q1D case, the LOFF phase appears in (TMTSF)2_2ClO4_4 superconductor for real values of its Q1D band parameters. We compare our theoretical calculations with the recent experimental data by Y. Maeno's group [S. Yonezawa et al., Phys. Rev. Lett. \textbf{100}, 117002 (2008)] and show that there is a good qualitative and quantitative agreement between the theory and experimental data.Comment: 4 pages, 1 figur

    Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O_2

    Full text link
    We extend the model of ferromagnetic superexchange in dilute magnetic semiconductors to the ferromagnetically ordered highly insulating compounds (dilute magnetic dielectrics). The intrinsic ferromagnetism without free carriers is observed in oxygen-deficient films of anatase TiO_2 doped with transition metal impurities in cation sublattice. We suppose that ferromagnetic order arises due to superexchange between complexes [oxygen vacancies + magnetic impurities], which are stabilized by charge transfer from vacancies to impurities. The Hund rule controls the superexchange via empty vacancy related levels so that it becomes possible only for the parallel orientation of impurity magnetic moments. The percolation threshold for magnetic ordering is determined by the radius of vacancy levels, but the exchange mechanism does not require free carriers. The crucial role of the non-stoichiometry in formation of the ferromagnetism makes the Curie temperatures extremely sensitive to the methods of sample preparation.Comment: 18 pages, 2 figure

    Ultracold O2O_2+O2O_2 collisions in a magnetic field: on the role of the potential energy surface

    Get PDF
    The collision dynamics of 17O2(3Σg−)+17O2(3Σg−)^{17}O_2(^3\Sigma_g^-) +^{17}O_2(^3\Sigma_g^-) in the presence of a magnetic field is studied within the close-coupling formalism in the range between 10 nK and 50 mK. A recent global {\em ab initio} potential energy surface (PES) is employed and its effect on the dynamics is analyzed and compared with previous calculations where an experimentally derived PES was used [New J. Phys {\bf 11}, 055021 (2009)]. In contrast to the results using the older PES, magnetic field dependence of the low-field-seeking state in the ultracold regime is characterized by quite a large background scattering length, abga_{bg}, and, in addition, cross sections exhibit broad and pronounced Feshbach resonances. The marked resonance structure is somewhat surprising considering the influence of inelastic scattering, but it can be explained by resorting to the analytical van der Waals theory, where the short range amplitude of the entrance channel wave function is enhanced by the large abga_{bg}. This strong sensitivity to the short range of the {\em ab initio} PES persists up to relatively high energies (10 mK). After this study and despite quantitative predictions are very difficult, it can be concluded that the ratio between elastic and spin relaxation scattering is generally small, except for magnetic fields which are either low or close to an asymmetric Fano-type resonance. Some general trends found here, such as a large density of quasibound states and a propensity towards large scattering lengths, could be also characteristic of other anisotropic molecule-molecule systems.Comment: 24 pages, 8 figure

    MIR376A is a regulator of starvation-induced autophagy

    Get PDF
    Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration. Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR. Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role. Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy
    • …
    corecore