55 research outputs found
Protein arginine methyltransferases interact with intraflagellar transport particles and change location during flagellar growth and resorption
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 28 (2017): 1208-1222, doi:10.1091/mbc.E16-11-0774.Changes in protein by posttranslational modifications comprise an important mechanism for the control of many cellular processes. Several flagellar proteins are methylated on arginine residues during flagellar resorption; however, the function is not understood. To learn more about the role of protein methylation during flagellar dynamics, we focused on protein arginine methyltransferases (PRMTs) 1, 3, 5, and 10. These PRMTs localize to the tip of flagella and in a punctate pattern along the length, very similar, but not identical, to that of intraflagellar transport (IFT) components. In addition, we found that PRMT 1 and 3 are also highly enriched at the base of the flagella, and the basal localization of these PRMTs changes during flagellar regeneration and resorption. Proteins with methyl arginine residues are also enriched at the tip and base of flagella, and their localization also changes during flagellar assembly and disassembly. PRMTs are lost from the flagella of fla10-1 cells, which carry a temperature-sensitive mutation in the anterograde motor for IFT. The data define the distribution of specific PRMTs and their target proteins in flagella and demonstrate that PRMTs are cargo for translocation within flagella by the process of IFT.This work was supported by National Science Foundation Award MCB 0950402 (R.D.S.), the Ira Allen Eastman (Class of 1829) Professorship at Dartmouth (R.D.S.), which was established in 1910 through a gift to the College by his widow, Jane Eastman, and by a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science (K.M.)
Crystal structure of a Ca2+-dependent regulator of flagellar motility reveals the open-closed structural transition
Sperm chemotaxis toward a chemoattractant is very important for the success of fertilization. Calaxin, a member of the neuronal calcium sensor protein family, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis of ascidian, Ciona intestinalis. Here, we present the crystal structures of calaxin both in the open and closed states upon Ca2+ and Mg2+ binding. The crystal structures revealed that three of the four EF-hands of a calaxin molecule bound Ca2+ ions and that EF2 and EF3 played a critical role in the conformational transition between the open and closed states. The rotation of α7 and α8 helices induces a significant conformational change of a part of the α10 helix into the loop. The structural differences between the Ca2+- and Mg2+-bound forms indicates that EF3 in the closed state has a lower affinity for Mg2+, suggesting that calaxin tends to adopt the open state in Mg2+-bound form. SAXS data supports that Ca2+-binding causes the structural transition toward the closed state. The changes in the structural transition of the C-terminal domain may be required to bind outer-arm dynein. These results provide a novel mechanism for recognizing a target protein using a calcium sensor protein
Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos
Through their coordinated alignment and beating, motile cilia generate directional fluid flow and organismal movement. While the mechanisms used by multiciliated epithelial tissues to achieve this coordination have been widely studied, much less is known about regulation of monociliated tissues such as those found in the vertebrate node and swimming planktonic larvae. Here, we show that a calcium sensor protein associated with outer arm dynein, calaxin, is a critical regulator for the coordinated movements of monocilia. Knockdown of calaxin gene in sea urchin embryos results in uncoordinated ciliary beating and defective directional movement of the embryos, but no apparent abnormality in axoneme ultrastructure. Examination of the beating cycle of individual calaxin-deficient cilia revealed a marked effect on the waveform and spatial range of ciliary bending. These findings indicate that calaxin-mediated regulation of ciliary beating is responsible for proper basal body orientation and ciliary alignment in fields of monociliated cells
Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos
International audienceThrough their coordinated alignment and beating, motile cilia generate directional fluid flow and organismal movement. While the mechanisms used by multiciliated epithelial tissues to achieve this coordination have been widely studied, much less is known about regulation of monociliated tissues such as those found in the vertebrate node and swimming planktonic larvae. Here, we show that a calcium sensor protein associated with outer arm dynein, calaxin, is a critical regulator for the coordinated movements of monocilia. Knockdown of calaxin gene in sea urchin embryos results in uncoordinated ciliary beating and defective directional movement of the embryos, but no apparent abnormality in axoneme ultrastructure. Examination of the beating cycle of individual calaxin-deficient cilia revealed a marked effect on the waveform and spatial range of ciliary bending. These findings indicate that calaxin-mediated regulation of ciliary beating is responsible for proper basal body orientation and ciliary alignment in fields of monociliated cells
Role of Ca2+ transients at the node of the mouse embryo in breaking of left-right symmetry
Immotile cilia sense extracellular signals such as fluid flow, but whether Ca2+ plays a role in flow sensing has been unclear. Here, we examined the role of ciliary Ca2+ in the flow sensing that initiates the breaking of left-right (L-R) symmetry in the mouse embryo. Intraciliary and cytoplasmic Ca2+ transients were detected in the crown cells at the node. These Ca2+ transients showed L-R asymmetry, which was lost in the absence of fluid flow or the PKD2 channel. Further characterization allowed classification of the Ca2+ transients into two types: cilium-derived, L-R-asymmetric transients (type 1) and cilium-independent transients without an L-R bias (type 2). Type 1 intraciliary transients occurred preferentially at the left posterior region of the node, where L-R symmetry breaking takes place. Suppression of intraciliary Ca2+ transients delayed L-R symmetry breaking. Our results implicate cilium-derived Ca2+ transients in crown cells in initiation of L-R symmetry breaking in the mouse embryo
Mutations in the β-amyloid precursor protein in familial Alzheimer’s disease increase Aβ oligomer production in cellular models
Soluble oligomers of amyloid-β (Aβ) peptides (AβOs) contribute to neurotoxicity in Alzheimer’s disease (AD). However, it currently remains unknown whether an increase in AβOs is the common phenotype in cellular and animal models. Furthermore, it has not yet been established whether experimental studies conducted using models overexpressing mutant genes of the amyloid precursor protein (APP) are suitable for investigating the underlying molecular mechanism of AD. We herein employed the Flp-In™ T-REx™-293 (T-REx 293) cellular system transfected with a single copy of wild-type, Swedish-, Dutch-, or London-type APP, and quantified the levels of Aβ monomers (Aβ1-40 and Aβ1-42) and AβOs using an enzyme-linked immunosorbent assay (ELISA). The levels of extracellular AβOs were significantly higher in Dutch- and London-type APP-transfected cells than in wild-type APP-transfected cells. Increased levels were also observed in Swedish-type APP-transfected cells. On the other hand, intracellular levels of AβOs were unaltered among wild-type and mutant APP-transfected cells. Intracellular levels of Aβ monomers were undetectable, and no common abnormality was observed in their extracellular levels or ratios (Aβ1-42/Aβ1-40) among the cells examined. We herein demonstrated that increased levels of extracellular AβOs are the common phenotype in cellular models harboring different types of APP mutations. Our results suggest that extracellular AβOs play a key role in the pathogenesis of AD
- …