71 research outputs found

    Differences in perception of the WHO International Code of Marketing of Breast Milk Substitutes between pediatricians and obstetricians in Japan

    Get PDF
    BACKGROUND: The World Health Organization International Code of Marketing of Breast-Milk Substitutes (WHO Code) aims to protect and promote breastfeeding. Japan ratified the WHO Code in 1994, but most hospitals in Japan continue to receive free supplies of infant formula and distribute discharge packs to new mothers provided by infant formula companies. The aim of this study was to explore the knowledge and attitudes of pediatricians and obstetricians in Japan to the WHO Code. METHODS: A self-completion questionnaire was sent to 132 pediatricians in the 131 NICUs which belonged to the Neonatal Network of Japan, and to 96 chief obstetricians in the general hospitals in the Kanto area of Japan, in 2004. RESULTS: Responses were received from 68% of pediatricians and 64% of obstetricians. Sixty-six percent of pediatricians agreed that "Breastmilk is the best", compared to only 13% of obstetricians. Likewise, pediatricians were more likely to be familiar with the WHO Code (51%) than obstetricians (18%). CONCLUSION: In Japan, pediatricians and obstetricians, in general, have low levels of support for breastfeeding and low levels of familiarity with the WHO Code. To increase the breastfeeding rates in Japan, both pediatricians and obstetricians need increased knowledge about current infant feeding practices and increased awareness of international policies to promote breastfeeding

    Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules.

    Get PDF
    Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo

    Improvement in the productivity of xylooligosaccharides from waste medium after mushroom cultivation by hydrothermal treatment with suitable pretreatment

    Get PDF
    The effective xylooligosaccharides (XOs) production from the waste medium after mushroom cultivation (WM) was investigated. The WM contains rich nutrients (protein, etc.) which induce Maillard reaction with reducing sugars under hydrothermal conditions. To improve the productivity of XOs, the suitable pretreatment combined with washing and grinding was investigated, and subsequently hydrothermal treatment was demonstrated with batch type and continuous flow type reactor. The washing pretreatment with hot water of 60 degrees C was effective to remove nutrients from the WM, and it led to prevent brownish discoloration on the hydrothermal treatment. On the basis of experimental data, industrial XOs production processes consisting of the pretreatment, hydrothermal treatment and purification step was designed. During the designed process, 2.3 kg-dry of the purified XOs was produced from 30 kg-wet of the WM (15% yield as dry basis weight). Theoretical yield of XOs attained to 48% as xylan weight in the WM.ArticleBioresource Technology. 101(15):6006-6011 (2010)journal articl

    Simple generation of hairless mice for in vivo imaging

    Get PDF
    The in vivo imaging of mice makes it possible to analyze disease progress non-invasively through reporter gene expression. As the removal of hair improves the accuracy of in vivo imaging, gene-modified mice with a reporter gene are often crossed with Hos:HR-1 mutant mice homozygous for the spontaneous Hrhr mutation that exhibit a hair loss phenotype. However, it is time consuming to produce mice carrying both the reporter gene and mutant Hrhr gene by mating. In addition, there is a risk that genetic background of the gene-modified mice would be altered by mating. To resolve these issues, we established a simple method to generate hairless mice maintaining the original genetic background by CRISPR technology. First, we constructed the pX330 vector, which targets exon 3 of Hr. This DNA vector (5 ng/µl) was microinjected into the pronuclei of C57BL/6J mice. Induced Hr gene mutations were found in many founders (76.1%) and these mutations were heritable. Next, we performed in vivo imaging using these gene-modified hairless mice. As expected, luminescent objects in their body were detected by in vivo imaging. This study clearly showed that hairless mice could be simply generated by the CRISPR/Cas9 system, and this method may be useful for in vivo imaging studies with various gene-modified mice

    Generation and Characterization of a Cell Type-Specific, Inducible Cre-Driver Line to Study Olfactory Processing

    Get PDF
    In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo. Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science
    corecore