97 research outputs found

    Roles of two successive phase transitions in new spin-Peierls system TiOBr

    Full text link
    In this sturdy, we determine the roles of two successive phase transitions in the new spin-Peierls system TiOBr by electron and synchrotron X-ray diffraction analyses. Results show an incommensurate superstructure along the h- and k-directions between Tc1=27K and Tc2=47K, and a twofold superstructure which is related to a spin-Peierls lattice distortion below Tc1. The diffuse scattering observed above Tc2 indicates that a structural correlation develops at a high temperature. We conclude that Tc2 is a second-order lock-in temperature, which is related to the spin-Peierls lattice distortion with the incommensurate structure, and that Tc1 is from incommensurate to commensurate phase transition temperature accompanying the first-order spin-Peierls lattice distortion.Comment: 4 pages, 5 figure

    Pressure-induced changes in the magnetic and valence state of EuFe2As2

    Full text link
    We present the results of electrical resistivity, ac specific heat, magnetic susceptibility, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) of the ternary iron arsenide EuFe2As2 single crystal under pressure. Applying pressure leads to a continuous suppression of the antiferromagnetism associated with Fe moments and the antiferromagnetic transition temperature becomes zero in the vicinity of a critical pressure Pc ~2.5-2.7 GPa. Pressure-induced re-entrant superconductivity, which is highly sensitive to the homogeneity of the pressure, only appears in the narrow pressure region in the vicinity of Pc due to the competition between superconductivity and the antiferromagnetic ordering of Eu2+ moments. The antiferromagnetic state of Eu2+ moments changes to the ferromagnetic state above 6 GPa. We also found that the ferromagnetic order is suppressed with further increasing pressure, which is connected with a valence change of Eu ions.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    Compressed Sensing of Compton Profiles for Fermi Surface Reconstruction: Concept and Implementation

    Full text link
    Compton scattering is a well-established technique that can provide detailed information about electronic states in solids. Making use of the principle of tomography, it is possible to determine the Fermi surface from sets of Compton-scattering data with different scattering axes. Practical applications, however, are limited due to long acquisition time required for measuring along enough number of scattering directions. Here, we propose to overcome this difficulty using compressed sensing. Taking advantage of a hidden sparsity in the momentum distribution, we are able to reconstruct the three-dimensional momentum distribution of bcc-Li, and identify the Fermi surface with as little as 14 directions of scattering data with unprecedented accuracy. This compressed-sensing approach will permit further wider applications of the Compton scattering experiments.Comment: 12 pages, 7 figure

    Quench Characteristics of the ATLAS Central Solenoid

    Get PDF

    Ultimate Performance of the ATLAS Superconducting Solenoid

    Get PDF
    A 2 tesla, 7730 ampere, 39 MJ, 45 mm thin superconducting solenoid with a 2.3 meters warm bore and 5.3 meters length, is installed in the center of the ATLAS detector and successfully commissioned. The solenoid shares its cryostat with one of the detector's calorimeters and provides the magnetic field required for the inner detectors to accurately track collision products from the LHC at CERN. After several years of a stepwise construction and test program, the solenoid integration 100 meters underground in the ATLAS cavern is completed. Following the on-surface acceptance test, the solenoid is now operated with its final cryogenic, powering and control system. A re-validation of all essential operating parameters is completed. The performance and test results of underground operation are reported and compared to those previously measured

    Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model

    Full text link
    We investigate the two-orbital periodic Anderson model, where the local orbital fluctuations of f-electrons couple with a two-fold degenerate Jahn-Teller phonon, by using the dynamical mean-field theory. It is found that the heavy fermion state caused by the Coulomb interaction between f-electrons U is largely enhanced due to the electron-phonon coupling g, in contrast to the case with the single-orbital periodic Anderson model where the effects of U and g compete to each other. In the heavy fermion state for large UU and g, both the orbital and lattice fluctuations are enhanced, while the charge (valence) and spin fluctuations are suppressed. In the strong coupling regime, a sharp soft phonon mode with a large spectral weight is observed for small U, while a broad soft phonon mode with a small spectral weight is observed for large U. The cooperative effect of U and g for half-filling with two f-electrons per atom nf=2n_f=2 is more pronounced than that for quarter-filling with nf=1n_f=1.Comment: 8 pages, 11 figures, accepted for publication in JPS
    • 

    corecore