96 research outputs found

    A multi-omics approach to evaluate the quality of milk whey used in Ricotta cheese production

    Get PDF
    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples

    Computational shelf-life dating : complex systems approaches to food quality and safety

    Get PDF
    Shelf-life is defined as the time that a product is acceptable and meets the consumers expectations regarding food quality. It is the result of the conjunction of all services in production, distribution, and consumption. Shelf-life dating is one of the most difficult tasks in food engineering. Market pressure has lead to the implementation of shelf-life by sensory analyses, which may not reflect the full quality spectra. Moreover, traditional methods for shelf-life dating and small-scale distribution chain tests cannot reproduce in a laboratory the real conditions of storage, distribution, and consumption on food quality. Today, food engineers are facing the challenges to monitor, diagnose, and control the quality and safety of food products. The advent of nanotechnology, multivariate sensors, information systems, and complex systems will revolutionize the way we manage, distribute, and consume foods. The informed consumer demands foods, under the legal standards, at low cost, high standards of nutritional, sensory, and health benefits. To accommodate the new paradigms, we herein present a critical review of shelf-life dating approaches with special emphasis in computational systems and future trends on complex systems methodologies applied to the prediction of food quality and safety.Fundo Europeu de Desenvolvimento Regional (FEDER) - Programa POS-ConhecimentoFundação para a Ciência e a Tecnologia (FCT) - SFRH/BPD/26133/2005, SFRH/ BPD/20735/200

    A reanalysis of mouse ENCODE comparative gene expression data [v1; ref status: indexed, http://f1000r.es/5ez]

    No full text
    Recently, the Mouse ENCODE Consortium reported that comparative gene expression data from human and mouse tend to cluster more by species rather than by tissue. This observation was surprising, as it contradicted much of the comparative gene regulatory data collected previously, as well as the common notion that major developmental pathways are highly conserved across a wide range of species, in particular across mammals. Here we show that the Mouse ENCODE gene expression data were collected using a flawed study design, which confounded sequencing batch (namely, the assignment of samples to sequencing flowcells and lanes) with species. When we account for the batch effect, the corrected comparative gene expression data from human and mouse tend to cluster by tissue, not by species

    Functional Characterization of Variations on Regulatory Motifs

    Get PDF
    Transcription factors (TFs) regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication i

    Data files and codes used in the reanalysis of the mouse encode comparative gene expression data

    No full text
    <p>We provide supplementary files of the python codes used to process and prepare the data for analysis with R, and the data files for the python codes. We also provide the R codes we used to perform the different analyses as supplementary files, as well as the input for the R codes. Please see supplementary text files for more details.</p

    Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs

    Get PDF
    <div><p>Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ∼8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution.</p> </div

    Classification performance of combined 100 nt single-read predictions, as compared to the best performing paired-end configurations.

    No full text
    <p>We combined predictions made for different 100 nt fragments of the same sequence, by selecting the prediction with the highest confidence score at the genus level (or the lowest common level available). We evaluated the performance, at ranks genus and family (left and right panels, respectively), of combinations of fragments from the V3 and V4 regions (top and bottom panels, respectively) with fragments from each of the other regions examined, and compared it to the performance of the V3 and V4 100 nt paired-end configurations (pointed to by arrows). We used the results of leave-k-out tests classifying the LTP sequences to determine confidence score thresholds for a set of desired false prediction rate (FPR) values (x axis), so that the FPR would be at most the desired value. We then used these thresholds to calculate the classification coverage of sequences from environmental (uncultured) bacteria that corresponds to the desired FPR (y axis). <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053608#pone.0053608.s006" target="_blank">Figure S6</a> compares the performance of the combinations for the ranks order, class, and phylum.</p
    corecore