84 research outputs found

    Spatial Domain Resource Sharing for Overlapping Cells in Indoor Environment

    Get PDF
    As microcell wireless systems become more widespread, intercell interference among the access points will increase due to the limited frequency resource. In the overlapping cell scenario, radio resources should be shared by multiple cells. Although time and frequency resource sharing has been described in many papers, there is no detailed report on dynamic spatial resource sharing among multiple cells for microcell wireless systems. Thus, we present the effectiveness of spatial resource sharing among two access points. We introduce two scenarios based on the zero forcing method; one is the primary-secondary AP scenario and the other is the cooperative AP scenario. To evaluate the transmission performance of spatial resource sharing, channel matrices are measured in an indoor environment. The simulation results using the measured channel matrices show the potential of spatial resource sharing

    Cellular Pharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan on Brain Cells

    No full text
    Yokukansan (YKS) is a traditional Japanese Kampo medicine currently used for the treatment of the behavioral psychological symptoms associated with dementia (BPSD), which is frequently problematic in neurodegenerative disorders such as Alzheimer’s disease. Regarding the pharmacological mechanisms underlying its efficacy, we recently reviewed the multiple effects of YKS on the neurotransmitter systems (e.g., glutamatergic, serotonergic, dopaminergic, cholinergic, GABAergic, and adrenergic neurotransmission) in various brain regions that are related to the psychological, emotional, cognitive, or memory functions. These multiple effects are thought to be caused by multiple components included in YKS. In addition, YKS exhibits various effects on brain cells (i.e., neurons, glial cells including astrocytes, oligodendrocytes, and microglial cells, and endothelial cells). In this review, we summarize recent evidence demonstrating the cellular pharmacological effects of YKS on these brain cells, and discuss the current understanding of its efficacy and mechanism. In particular, YKS maintains the neuronal survival and function by multiple beneficial effects, including anti-apoptosis, anti-oxidation, anti-endoplasmic reticulum stress, and neurogenesis. YKS also acts on glial cells by: facilitating the transport of glutamate into astrocytes; promoting the proliferation and differentiation of oligodendrocytes; and enhancing the anti-inflammatory properties of microglial cells. These glial effects are thought to support neuronal functioning within the brain. Various ingredients involved in these effects have been identified, some of which can pass through the artificial blood–brain barrier without disrupting the endothelial tight junctions. This multitude of interactive effects displayed by YKS on neuronal and glial cells is suggested to be involved in the multitude of neuropsychopharmacological actions of YKS, which are related to the improvement of BPSD

    Shakuyakukanzoto attenuates oxaliplatin-induced cold dysesthesia by inhibiting the expression of transient receptor potential melastatin 8 in mice

    No full text
    Oxaliplatin-induced peripheral neuropathy characterized especially as cold dysesthesia is a major dose-limiting side effect of the drug and is very difficult to control. In the present study, we examined whether the traditional herbal formulation Shakuyakukanzoto (SKT: 芍藥甘草湯Sháo Yào Gān Cǎo Tāng) could relieve oxaliplatin-induced cold dysesthesia in mice. The inhibitory mechanisms were also investigated. Repetitive administration of SKT (0.1–1.0 g/kg) starting from the day after oxaliplatin injection inhibited cold dysesthesia in a dose-dependent manner. Our previous report has shown that the mRNA expression of transient receptor potential melastatin 8 (TRPM8), characterized as a cold-sensing cation channel, is increased in the dorsal root ganglia of mice treated with oxaliplatin. In addition, TRPM8 antagonist TC-I 2014 (10 and 30 mg/kg) also attenuated cold dysesthesia in oxaliplatin-treated mice. Taken together, it is suggested that TRPM8 is involved in the cold dysesthesia induced by oxaliplatin. Repetitive administration of SKT inhibited the mRNA expression of TRPM8 induced by oxaliplatin in the dorsal root ganglia. These results suggested that prophylactic repetitive administration of SKT is effective in preventing the exacerbation of oxaliplatin-induced cold dysesthesia by inhibiting the mRNA expression of TRPM8 in the dorsal root ganglia

    Specific binding and characteristics of 18β-glycyrrhetinic acid in rat brain.

    No full text
    18β-Glycyrrhetinic acid (GA) is the aglycone of glycyrrhizin that is a component of Glycyrrhiza, and has several pharmacological actions in the central nervous system. Recently, GA has been demonstrated to reach the brain by crossing the blood-brain barrier in rats after oral administration of a Glycyrrhiza-containing traditional Japanese medicine, yokukansan. These findings suggest that there are specific binding sites for GA in the brain. Here we show evidence that [3H]GA binds specifically to several brain areas by quantitative autoradiography; the density was higher in the hippocampus, moderate in the caudate putamen, nucleus accumbens, amygdala, olfactory bulb, cerebral cortex, thalamus, and mid brain, and lower in the brain stem and cerebellum. Several kinds of steroids, gap junction-blocking reagents, glutamate transporter-recognized compounds, and glutamate receptor agonists did not inhibit the [3H]GA binding. Microautoradiography showed that the [3H]GA signals in the hippocampus were distributed in small non-neuronal cells similar to astrocytes. Immunohistochemical analysis revealed that immunoreactivity of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a defined molecule recognized by GA, was detected mainly in neurons, moderately in astrocytes, and very slightly in microglial cells, of the hippocampus. These results demonstrate that specific binding sites for GA exist in rat brain tissue, and suggest that the pharmacological actions of GA may be related to 11β-HSD1 in astrocytes. This finding provides important information to understand the pharmacology of GA in the brain
    corecore