61 research outputs found

    Durand et al 2012 Supplemental figures

    Get PDF
    Objective. Our objective was to compare the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) from patients with osteoarthritis (OA) to that of PBMCs from self-reported normal individuals. Methods. PBMCs from 140 patients with OA and 45 healthy donors were assayed for CD14+ expression and induced to differentiate into osteoclasts (OCs) over 3 weeks in vitro. We assessed the number of the OCs, their resorptive activity, OC apoptosis, and expression of the following cytokine receptors: receptor activator of nuclear factor κB (RANK), interleukin-1 receptor type I (IL-1R1) and IL-1R2. A ridge logistic regression classifier was developed to discriminate OA patients from controls. Results. PBMCs from OA patients gave rise to more OCs that resorbed more bone surface than did PBMCs from controls. The number of CD14+ precursors was comparable in both groups, but there was less apoptosis in OCs obtained from OA patients. Although no correlation was found between osteoclastogenic capacity and clinical or radiologic scores, levels of IL-1R1 were significantly lower in cultures from patients with OA compared to controls. OC apoptosis and expression levels of IL-1R1 and IL-1R2 were used to build a multivariate predictive model for OA. Conclusion. During 3 weeks of culture under identical conditions, monocytes from patients with OA display enhanced capacity to generate OCs compared to cells from controls. Enhanced osteoclastogenesis is accompanied by increased resorptive activity, reduced OC apoptosis and diminished IL-1R1 expression. These findings support the possibility that generalized changes in bone metabolism affecting OCs participate in the pathophysiology of OA

    CSpritz: accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs

    Get PDF
    CSpritz is a web server for the prediction of intrinsic protein disorder. It is a combination of previous Spritz with two novel orthogonal systems developed by our group (Punch and ESpritz). Punch is based on sequence and structural templates trained with support vector machines. ESpritz is an efficient single sequence method based on bidirectional recursive neural networks. Spritz was extended to filter predictions based on structural homologues. After extensive testing, predictions are combined by averaging their probabilities. The CSpritz website can elaborate single or multiple predictions for either short or long disorder. The server provides a global output page, for download and simultaneous statistics of all predictions. Links are provided to each individual protein where the amino acid sequence and disorder prediction are displayed along with statistics for the individual protein. As a novel feature, CSpritz provides information about structural homologues as well as secondary structure and short functional linear motifs in each disordered segment. Benchmarking was performed on the very recent CASP9 data, where CSpritz would have ranked consistently well with a Sw measure of 49.27 and AUC of 0.828. The server, together with help and methods pages including examples, are freely available at URL: http://protein.bio.unipd.it/cspritz/

    Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences.</p> <p>Results</p> <p>The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes.</p> <p>Conclusions</p> <p>The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at <url>http://biomine.ece.ualberta.ca/MODAS/</url>.</p

    TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    Get PDF
    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/

    Stochastic flowering phenology in Dactylis Glomerata populations described by Markov chain modelling

    Get PDF
    Understanding the relationship between flowering patterns and pollen dispersal is important in climate change modelling, pollen forecasting, forestry and agriculture. Enhanced understanding of this connection can be gained through detailed spatial and temporal flowering observations on a population level, combined with modelling simulating the dynamics. Species with large distribution ranges, long flowering seasons, high pollen production and naturally large populations can be used to illustrate these dynamics. Revealing and simulating species-specific demographic and stochastic elements in the flowering process will likely be important in determining when pollen release is likely to happen in flowering plants. Spatial and temporal dynamics of eight populations of Dactylis glomerata were collected over the course of two years to determine high-resolution demographic elements. Stochastic elements were accounted for using Markov Chain approaches in order to evaluate tiller-specific contribution to overall population dynamics. Tiller-specific developmental dynamics were evaluated using three different RV matrix correlation coefficients. We found that the demographic patterns in population development were the same for all populations with key phenological events differing only by a few days over the course of the seasons. Many tillers transitioned very quickly from non-flowering to full flowering, a process that can be replicated with Markov Chain modelling. Our novel approach demonstrates the identification and quantification of stochastic elements in the flowering process of D. glomerata, an element likely to be found in many flowering plants. The stochastic modelling approach can be used to develop detailed pollen release models for Dactylis, other grass species and probably other flowering plants

    Variability and structure of natural populations of Elymus caninus (L.) L. based on morphology

    No full text

    Dactylis glomerata L. subsp. slovenica [Dom.] Dom., a new taxon to Caucasus

    No full text
    Dactylis glomerata L. subsp. slovenica (Dom.) Dom. has been recorded in Western Caucasus at southern slopes of the Abishira-Akhuba range (Karachay-Cherkessia Autonomous Republic belonging to the Russian Federation). This new information is very important supplement dealing with the distribution of this taxon, because the area of its known distribution was moved very strongly to the East

    Blood transfusion in surgical oncology

    Get PDF
    corecore