365 research outputs found

    Look at the First Sentence: Position Bias in Question Answering

    Full text link
    Many extractive question answering models are trained to predict start and end positions of answers. The choice of predicting answers as positions is mainly due to its simplicity and effectiveness. In this study, we hypothesize that when the distribution of the answer positions is highly skewed in the training set (e.g., answers lie only in the k-th sentence of each passage), QA models predicting answers as positions can learn spurious positional cues and fail to give answers in different positions. We first illustrate this position bias in popular extractive QA models such as BiDAF and BERT and thoroughly examine how position bias propagates through each layer of BERT. To safely deliver position information without position bias, we train models with various de-biasing methods including entropy regularization and bias ensembling. Among them, we found that using the prior distribution of answer positions as a bias model is very effective at reducing position bias, recovering the performance of BERT from 37.48% to 81.64% when trained on a biased SQuAD dataset.Comment: 13 pages, EMNLP 202

    A cancer-associated mutation inactivates a region of the high-mobility group protein HMG20b essential for cytokinesis.

    Get PDF
    Defects in the completion of cell division by cytokinesis have long been proposed to foster carcinogenesis by engendering chromosome instability, but few tumor suppressor mechanisms controlling this process have so far been identified. Here, we identify a carboxyl (C)-terminal region of the high-mobility group protein HMG20b that is essential for cytokinesis, and report that it is inactivated by a cancer-associated mutation. We find that a C-terminal region of HMG20b spanning residues 173-317 is necessary and sufficient not only for its localization to cytokinetic structures, but also for its interaction with the tumor suppressor BRCA2, implicated in the abscission step of cytokinesis. Indeed, expression of this C-terminal HMG20b region suffices to restore cytokinesis in HMG20b-depleted cells. The non-conservative substitution of HMG20b residue Ala247 with Pro, reported in human lung cancer, disrupts these activities of HMG20b, impairing cytokinesis in a trans-dominant manner. Our findings provide fresh insight into the mechanism by which the HMG20b-BRCA2 complex controls mitotic cell division, and implicate heterozygous HMG20b mutations affecting cytokinesis regulation in the genesis of human cancers

    Effects of paramagnetic fluctuations on the thermochemistry of MnO (100) surfaces in the oxygen evolution reaction

    Full text link
    We investigated the effects of paramagnetic (PM) fluctuations on the thermochemistry of the MnO(100) surface in the oxygen evolution reaction (OER) using the "noncollinear magnetic sampling method \textit{plus} UU" (NCMSM+U+U). Various physical properties, such as the electronic structure, free energy, and charge occupation, of the MnO (100) surface in the PM state with several OER intermediates, were reckoned and compared to those in the antiferromagnetic (AFM) state. We found that PM fluctuation enhances charge transfer from a surface Mn ion to each of the intermediates and strengthens the chemical bond between them, while not altering the overall features, such as the rate determining step and resting state, in reaction pathways. The enhanced charge transfer can be attributed to the delocalized nature of valence bands observed in the PM surface. In addition, it was observed that chemical-bond enhancement depends on the intermediates, resulting in significant deviations in reaction energy barriers. Our study suggests that PM fluctuations play a significant role in the thermochemistry of chemical reactions occurring on correlated oxide surfaces.Comment: Maintext: 15 pages, 3 figures 2 tables; SI: 3 pages, 2 figure

    A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei.

    Get PDF
    A-type lamins encoded by LMNA form a structural fibrillar meshwork within the mammalian nucleus. How this nuclear organization may influence the execution of biological processes involving DNA transactions remains unclear. Here, we characterize changes in the dynamics and biochemical interactions of lamin A/C after DNA damage. We find that DNA breakage reduces the mobility of nucleoplasmic GFP-lamin A throughout the nucleus as measured by dynamic fluorescence imaging and spectroscopy in living cells, suggestive of incorporation into stable macromolecular complexes, but does not induce the focal accumulation of GFP-lamin A at damage sites. Using a proximity ligation assay and biochemical analyses, we show that lamin A engages chromatin via histone H2AX and its phosphorylated form (γH2AX) induced by DNA damage, and that these interactions are enhanced after DNA damage. Finally, we use three-dimensional time-lapse imaging to show that LMNA inactivation significantly reduces the positional stability of DNA repair foci in living cells. This defect is partially rescued by the stable expression of GFP-lamin A. Thus collectively, our findings suggest that the dynamic structural meshwork formed by A-type lamins anchors sites of DNA repair in mammalian nuclei, providing fresh insight into the control of DNA transactions by nuclear structural organization

    Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface

    Full text link
    With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.Comment: 27 pages, 6 figures, Supporting Informatio
    corecore