8 research outputs found

    Ventral Intradural Endodermal Cyst in the Cervical Spine Treated With Anterior Corpectomy -Case Report-

    No full text
    A 14-year-old girl who presented with an endodermal cyst manifesting as severe neck and shoulder pain along with vesicorectal disturbances. Cervical magnetic resonance imaging showed a slightly enhanced intradural cyst at the C6-7 level in the ventral side of the spinal canal, with significant dorsal shortening and thinning of the spinal cord. Anterior corpectomy was chosen because of the dorsal effacement of the spinal cord. The cyst wall was subtotally removed to avoid damage to the normal spinal cord. After cyst removal, the iliac bone and an anterior cervical plate were used for anterior fusion. Postoperatively, her pain subsided without neurological deficits. The histological diagnosis was endodermal cyst. The cyst did not recur during a follow-up period of 18 months. Endodermal cysts are rare congenital lesions of the spine lined by endodermal epithelium. The natural history of this lesion is unclear, and the surgical strategy for the approach route and the extent of removal of the cyst wall remain controversial. We suggest that the anterior approach may allow a safer and more effective surgical route for the treatment of ventrally located endodermal cyst compared to the posterior approach.ArticleNEUROLOGIA MEDICO-CHIRURGICA. 51(12):863-866 (2011)journal articl

    Risk Profile and 1-Year Outcome of Newly Diagnosed Atrial Fibrillation in Japan - Insights From GARFIELD-AF -

    No full text
    Background: Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective non-interventional study of stroke prevention in patients with newly diagnosed non-valvular AF (NAVF) that is being conducted in 35 countries

    Modulation of immune responses by targeting CD169/Siglec-1 with the glycan ligand

    No full text
    A fundamental role in the plant-bacterium interaction for Gram-negative phytopathogenic bacteria is played by membrane constituents, such as proteins, lipopoly- or lipooligosaccharides (LPS, LOS) and Capsule Polysaccharides (CPS). In the frame of the understanding the molecular basis of plant bacterium interaction, the Gram-negative bacterium Agrobacterium vitis was selected in this study. It is a phytopathogenic member of the Rhizobiaceae family and it induces the crown gall disease selectively on grapevines (Vitis vinifera). A. vitis wild type strain F2/5, and its mutant in the quorum sensing gene ΔaviR, were studied. The wild type produces biosurfactants; it is considered a model to study surface motility, and it causes necrosis on grapevine roots and HR (Hypersensitive Response) on tobacco. Conversely, the mutant does not show any surface motility and does not produce any surfactant material; additionally, it induces neither necrosis on grape, nor HR on tobacco. Therefore, the two strains were analyzed to shed some light on the QS regulation of LOS structure and the consequent variation, if any, on HR response. LOS from both strains were isolated and characterized: the two LOS structures maintained several common features and differed for few others. With regards to the common patterns, firstly: the Lipid A region was not phosphorylated at C4 of the non reducing glucosamine but glycosylated by an uronic acid (GalA) unit, secondly: a third Kdo and the rare Dha (3-deoxy-lyxo-2-heptulosaric acid) moiety was present. Importantly, the third Kdo and the Dha residues were substituted by rhamnose in a not stoichiometric fashion, giving four different oligosaccharide species. The proportions among these four species, is the key difference between the LOSs from both the two bacteria. LOS from both strains and Lipid A from wild type A. vitis are now examined for their HR potential in tobacco leaves and grapevine roots

    Looking back to move forward: a twenty-year audit of herpes zoster in Asia-Pacific

    No full text

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events

    Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    No full text
    The stability with respect to a peelingballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (w∗i), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and w∗i effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in w∗i. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w∗i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA
    corecore