436 research outputs found

    Understanding signaling cascades in melanoma

    Get PDF
    Understanding regulatory pathways involved in melanoma development and progression has advanced significantly in recent years. It is now appreciated that melanoma is the result of complex changes in multiple signaling pathways that affect growth control, metabolism, motility and the ability to escape cell death programs. Here we review the major signaling pathways currently known to be deregulated in melanoma with an implication to its development and progression. Among these pathways are Ras, B-Raf, MEK, PTEN, phosphatidylinositol-3 kinase (PI3Ks) and Akt which are constitutively activated in a significant number of melanoma tumors, in most cases due to genomic change. Other pathways discussed in this review include the [Janus kinase/signal transducer and activator of transcription (JAK/STAT), transforming growth factor-beta pathways which are also activated in melanoma, although the underlying mechanism is not yet clear. As a paradigm for remodeled signaling pathways, melanoma also offers a unique opportunity for targeted drug development.Fil: Lopez Bergami, Pablo Roberto. Sanford-burnham Medical Research Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Fitchmann, B. Sanford-burnham Medical Research Institute; Estados UnidosFil: Ronai, Ze´ev. Sanford-burnham Medical Research Institute; Estados Unido

    TGF-β Induces Surface LAP Expression on Murine CD4 T Cells Independent of Foxp3 Induction

    Get PDF
    It has been reported that human FOXP3(+) CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3(+) Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs.We generated anti-mouse LAP mAbs by immunizing TGF-β(-/-) animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3(+) CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4(+)CD25(-) T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4(+)CD25(-) T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3(+) but also on T cells that remained Foxp3(-) after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells.Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface

    The predictive value of molecular markers (p53, EGFR, ATM, CHK2) in multimodally treated squamous cell carcinoma of the oesophagus

    Get PDF
    Pretherapeutic identification of oesophageal squamous cell carcinomas that will respond to neoadjuvant chemoradiotherapy is an important attempt for improvement of patient's prognosis. In the current study, pretherapeutic biopsies from 94 oesophageal squamous cell carcinomas (cT3, cN0/+, cM0) in patients who underwent neoadjuvant chemoradiotherapy (RCTx: 45 Gy plus cisplatin and 5-fluorouracil) and subsequent oesophagectomy in the setting of a single-centre prospective treatment trial were investigated by means of immunohistochemistry. Expression of proteins involved in DNA repair and/or cell-cycle regulation, that is p53, p53 (phosphorylated at Ser15), EGFR, ATM protein kinase (phosphorylated at Ser1981) and checkpoint kinase 2 (CHK2) (phosphorylated at Thr68) was correlated with the response to RCTx and with overall survival. Tumours that were positive for CHK2 expression more frequently showed clinically determined regression after RCTx (69.4%) than tumours that were negative for CHK2 expression (32.1%; P=0.0011), whereas other parameters did not correlate with tumour regression. Expression of ATM correlated with expression of CHK2 (P=0.0061) and p53-phospho (P=0.0064). Expression of p53 correlated with expression of p53-phospho (P<0.0001). In contrast to clinical and histopathological response evaluation, none of the molecular parameters under investigation correlated with overall survival. In conclusion, expression analysis of p53, EGFR CHK2 and ATM has no predictive value in multimodally treated oesophageal squamous cell carcinoma

    The effects of preoperative chemotherapy on isolated tumour cells in the blood and bone marrow of gastric cancer patients

    Get PDF
    Recent studies in breast cancer suggest that monitoring the isolated tumour cells (ITC) may be used as a surrogate marker to evaluate the efficacy of systemic chemotherapy. In the present study, we have investigated the effects of preoperative chemotherapy on ITC in the blood and bone marrow of patients with potentially resectable gastric cancer. After sorting out the CD45-positive cells, the presence of ITC defined as cytokeratin-positive cells was examined before and after preoperative chemotherapy. The patients received two courses of preoperative chemotherapy with cisplatin (100 mg m−2, day 1) and 5-fluorouracil (1000 mg m−2, days 1–5), administered every 28 days. Fourteen of 32 (44%) patients initially diagnosed with ITC in blood and/or bone marrow were found to be negative (responders) after preoperative chemotherapy (P<0.01). The incidence of ITC in bone marrow was also significantly (P<0.01) reduced from 97 (31 of 32) to 53% (17 of 32). The difference between patients positive for ITC in the blood before (n=7, 22%) and after (n=5, 16%) chemotherapy was statistically insignificant. The overall 3-year survival rates were 32 and 49% in the responders and non-responders, respectively (P=0.683). These data indicate that preoperative chemotherapy can reduce the incidence of ITC in patients with gastric cancer

    Osteoinduction in human fat derived stem cells by recombinant human bone morphogenetic protein-2 produced in Escherichia coli

    Get PDF
    Bioactive recombinant human bone morphogenetic protein-2 (rhBMP-2) was obtained using Escherichia coli pET-25b expression system: 55 mg purified rhBMP-2 were achieved per g cell dry wt, with up to 95% purity. In murine C2C12 cell line, rhBMP-2 induced an increase in the transcription of Smads and of osteogenic markers Runx2/Cbfa1 and Osterix, measured by semi-quantitative RT-PCR. Bioassays performed in human fat-derived stem cells showed an increased activity of the early osteogenic marker, alkaline phosphatase, and the absence of cytotoxicity

    Adverse prognosis of epigenetic inactivation in RUNX3 gene at 1p36 in human pancreatic cancer

    Get PDF
    Alteration in transforming growth factor-β signalling pathway is one of the main causes of pancreatic cancer. The human runt-related transcription factor 3 gene (RUNX3) is an important component of this pathway. RUNX3 locus 1p36 is commonly deleted in a variety of human cancers, including pancreatic cancer. Therefore, we examined genetic and epigenetic alterations of RUNX3 in human pancreatic cancer. Thirty-two patients with pancreatic cancer were investigated in this study. We examined the methylation status of RUNX3 promoter region, loss of heterozygosity (LOH) at 1p36, and conducted a mutation analysis. The results were compared with clinicopathological data. Promoter hypermethylation was detected in 20 (62.5%) of 32 pancreatic cancer tissues, confirmed by sequence of bisulphite-treated DNA. Loss of heterozygosity was detected in 11 (34.3%) of 32 pancreatic cancers. In comparison with clinicopathological data, hypermethylation showed a relation with a worse prognosis (P=0.0143). Hypermethylation and LOH appear to be common mechanisms for inactivation of RUNX3 in pancreatic cancer. Therefore, RUNX3 may be an important tumour suppressor gene related to pancreatic cancer

    Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma

    Get PDF
    BACKGROUND: North central China has some of the highest rates of esophageal squamous cell carcinoma in the world with cumulative mortality surpassing 20%. Mitochondrial DNA (mtDNA) accumulates more mutations than nuclear DNA and because of its high abundance has been proposed as a early detection device for subjects with cancer at various sites. We wished to examine the prevalence of mtDNA mutation and polymorphism in subjects from this high risk area of China. METHODS: We used DNA samples isolated from tumors, adjacent normal esophageal tissue, and blood from 21 esophageal squamous cell carcinoma cases and DNA isolated from blood from 23 healthy persons. We completely sequenced the control region (D-Loop) from each of these samples and used a PCR assay to assess the presence of the 4977 bp common deletion. RESULTS: Direct DNA sequencing revealed that 7/21 (33%, 95% CI = 17–55%) tumor samples had mutations in the control region, with clustering evident in the hyper-variable segment 1 (HSV1) and the homopolymeric stretch surrounding position 309. The number of mutations per subject ranged from 1 to 16 and there were a number of instances of heteroplasmy. We detected the 4977 bp 'common deletion' in 92% of the tumor and adjacent normal esophageal tissue samples examined, whereas no evidence of the common deletion was found in corresponding peripheral blood samples. CONCLUSIONS: Control region mutations were insufficiently common to warrant attempts to develop mtDNA mutation screening as a clinical test for ESCC. The common deletion was highly prevalent in the esophageal tissue of cancer cases but absent from peripheral blood. The potential utility of the common deletion in an early detection system will be pursued in further studies

    Crosstalk between Nuclear Factor I-C and Transforming Growth Factor-β1 Signaling Regulates Odontoblast Differentiation and Homeostasis

    Get PDF
    Transforming growth factor-β1 (TGF-β1) signaling plays a key role in vertebrate development, homeostasis, and disease. Nuclear factor I-C (NFI-C) has been implicated in TGF-β1 signaling, extracellular matrix gene transcription, and tooth root development. However, the functional relationship between NFI-C and TGF-β1 signaling remains uncharacterized. The purpose of this study was to identify the molecular interactions between NFI-C and TGF-β1 signaling in mouse odontoblasts. Real-time polymerase chain reaction and western analysis demonstrated that NFI-C expression levels were inversely proportional to levels of TGF-β1 signaling molecules during in vitro odontoblast differentiation. Western blot and immunofluorescence results showed that NFI-C was significantly degraded after TGF-β1 addition in odontoblasts, and the formation of the Smad3 complex was essential for NFI-C degradation. Additionally, ubiquitination assay results showed that Smurf1 and Smurf2 induced NFI-C degradation and polyubiquitination in a TGF-β1-dependent manner. Both kinase and in vitro binding assays revealed that the interaction between NFI-C and Smurf1/Smurf2 requires the activation of the mitogen-activated protein kinase pathway by TGF-β1. Moreover, degradation of NFI-C induced by TGF-β1 occurred generally in cell types other than odontoblasts in normal human breast epithelial cells. In contrast, NFI-C induced dephosphorylation of p-Smad2/3. These results show that crosstalk between NFI-C and TGF-β1 signaling regulates cell differentiation and homeostatic processes in odontoblasts, which might constitute a common cellular mechanism
    corecore