8 research outputs found
Demonstrating the undermining of science and health policy after the Fukushima nuclear accident by applying the Toolkit for detecting misused epidemiological methods
It is well known that science can be misused to hinder the resolution (i.e., the elimination and/or control) of a health problem. To recognize distorted and misapplied epidemiological science, a 33-item "Toolkit for detecting misused epidemiological methods" (hereinafter, the Toolkit) was published in 2021. Applying the Toolkit, we critically evaluated a review paper entitled, "Lessons learned from Chernobyl and Fukushima on thyroid cancer screening and recommendations in the case of a future nuclear accident" in Environment International in 2021, published by the SHAMISEN (Nuclear Emergency Situations - Improvement of Medical and Health Surveillance) international expert consortium. The article highlighted the claim that overdiagnosis of childhood thyroid cancers greatly increased the number of cases detected in ultrasound thyroid screening following the 2011 Fukushima nuclear accident. However, the reasons cited in the SHAMISEN review paper for overdiagnosis in mass screening lacked important information about the high incidence of thyroid cancers after the accident. The SHAMISEN review paper ignored published studies of screening results in unexposed areas, and included an invalid comparison of screenings among children with screenings among adults. The review omitted the actual state of screening in Fukushima after the nuclear accident, in which only nodules > 5 mm in diameter were examined. The growth rate of thyroid cancers was not slow, as emphasized in the SHAMISEN review paper; evidence shows that cancers detected in second-round screening grew to more than 5 mm in diameter over a 2-year period. The SHAMISEN consortium used an unfounded overdiagnosis hypothesis and misguided evidence to refute that the excess incidence of thyroid cancer was attributable to the nuclear accident, despite the findings of ongoing ultrasound screening for thyroid cancer in Fukushima and around Chernobyl. By our evaluation, the SHAMISEN review paper includes 20 of the 33 items in the Toolkit that demonstrate the misuse of epidemiology. The International Agency for Research on Cancer meeting in 2017 and its publication cited in the SHAMISEN review paper includes 12 of the 33 items in the Toolkit. Finally, we recommend a few enhancements to the Toolkit to increase its utility
The evaluation of risk factors for prolonged viral shedding during anti-SARS-CoV-2 monoclonal antibodies and long-term administration of antivirals in COVID-19 patients with B-cell lymphoma treated by anti-CD20 antibody
Abstract Background The global impact of the coronavirus disease 2019 (COVID-19) pandemic has resulted in significant morbidity and mortality. Immunocompromised patients, particularly those treated for B-cell lymphoma, have shown an increased risk of persistent infection with SARS-CoV-2 and severe outcomes and mortality. Multi-mutational SARS-CoV-2 variants can arise during the course of such persistent cases of COVID-19. No optimal, decisive strategy is currently available for patients with persistent infection that allows clinicians to sustain viral clearance, determine optimal timing to stop treatment, and prevent virus reactivation. We introduced a novel treatment combining antivirals, neutralizing antibodies, and genomic analysis with frequent monitoring of spike-specific antibody and viral load for immunocompromised patients with persistent COVID-19 infection. The aim of this retrospective study was to report and evaluate the efficacy of our novel treatment for immunocompromised B-cell lymphoma patients with persistent COVID-19 infection. Methods This retrospective descriptive analysis had no controls. Patients with B-cell lymphoma previously receiving immunotherapy including anti-CD20 antibodies, diagnosed as having COVID-19 infection, and treated in our hospital after January 2022 were included. We selected anti-SARS-CoV-2 monoclonal antibodies according to subvariants. Every 5 days, viral load was tested by RT-PCR, with antivirals continued until viral shedding was confirmed. Primary outcome was virus elimination. Independent predictors of prolonged viral shedding time were determined by multivariate Cox regression. Results Forty-four patients were included in this study. Thirty-five patients received rituximab, 19 obinutuzumab, and 26 bendamustine. Median treatment duration was 10 (IQR, 10–20) days; 22 patients received combination antiviral therapy. COVID-19 was severe in 16 patients, and critical in 2. All patients survived, with viral shedding confirmed at median 28 (IQR, 19–38) days. Bendamustine use or within 1 year of last treatment for B-cell lymphoma, and multiple treatment lines for B-cell lymphoma significantly prolonged time to viral shedding. Conclusions Among 44 consecutive patients treated, anti-SARS-CoV-2 monoclonal antibodies and long-term administration of antiviral drugs, switching, and combination therapy resulted in virus elimination and 100% survival. Bendamustine use, within 1 year of last treatment for B-cell lymphoma, and multiple treatment lines for B-cell lymphoma were the significant independent predictors of prolonged viral shedding time
Bromodomain protein BRD8 regulates cell cycle progression in colorectal cancer cells through a TIP60-independent regulation of the pre-RC complex
Summary: Bromodomain-containing protein 8 (BRD8) is a subunit of the NuA4/TIP60-histone acetyltransferase complex. Although BRD8 has been considered to act as a co-activator of the complex, its biological role remains to be elucidated. Here, we uncovered that BRD8 accumulates in colorectal cancer cells through the inhibition of ubiquitin-dependent protein degradation by the interaction with MRG domain binding protein. Transcriptome analysis coupled with genome-wide mapping of BRD8-binding sites disclosed that BRD8 transactivates a set of genes independently of TIP60, and that BRD8 regulates the expression of multiple subunits of the pre-replicative complex in concert with the activator protein-1. Depletion of BRD8 induced cell-cycle arrest at the G1 phase and suppressed cell proliferation. We have also shown that the bromodomain of BRD8 is indispensable for not only the interaction with histone H4 or transcriptional regulation but also its own protein stability. These findings highlight the importance of bromodomain as a therapeutic target