40 research outputs found
Neural basis for behavioral plasticity during the parental life-stage transition in mice
Parental care plays a crucial role in the physical and mental well-being of mammalian offspring. Although sexually naĂŻve male mice, as well as certain strains of female mice, display aggression toward pups, they exhibit heightened parental caregiving behaviors as they approach the time of anticipating their offspring. In this Mini Review, I provide a concise overview of the current understanding of distinct limbic neural types and their circuits governing both aggressive and caregiving behaviors toward infant mice. Subsequently, I delve into recent advancements in the understanding of the molecular, cellular, and neural circuit mechanisms that regulate behavioral plasticity during the transition to parenthood, with a specific focus on the sex steroid hormone estrogen and neural hormone oxytocin. Additionally, I explore potential sex-related differences and highlight some critical unanswered questions that warrant further investigation
A Neuronal Identity Code for the Odorant Receptor-Specific and Activity-Dependent Axon Sorting
SummaryIn the mouse, olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) converge their axons to a specific set of glomeruli in the olfactory bulb. To study how OR-instructed axonal fasciculation is controlled, we searched for genes whose expression profiles are correlated with the expressed ORs. Using the transgenic mouse in which the majority of OSNs express a particular OR, we identified such genes coding for the homophilic adhesive molecules Kirrel2/Kirrel3 and repulsive molecules ephrin-A5/EphA5. In the CNGA2 knockout mouse, where the odor-evoked cation influx is disrupted, Kirrel2 and EphA5 were downregulated, while Kirrel3 and ephrin-A5 were upregulated, indicating that these genes are transcribed in an activity-dependent manner. Mosaic analysis demonstrated that gain of function of these genes generates duplicated glomeruli. We propose that a specific set of adhesive/repulsive molecules, whose expression levels are determined by OR molecules, regulate the axonal fasciculation of OSNs during the process of glomerular map formation
Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues
Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems
Extensions of MADM (Mosaic Analysis with Double Markers) in Mice
Mosaic Analysis with Double Markers (MADM) is a method for generating genetically mosaic mice, in which sibling mutant and wild-type cells are labeled with different fluorescent markers. It is a powerful tool that enables analysis of gene function at the single cell level in vivo. It requires transgenic cassettes to be located between the centromere and the mutation in the gene of interest on the same chromosome. Here we compare procedures for introduction of MADM cassettes into new loci in the mouse genome, and describe new approaches for expanding the utility of MADM. We show that: 1) Targeted homologous recombination outperforms random transgenesis in generation of reliably expressed MADM cassettes, 2) MADM cassettes in new genomic loci need to be validated for biallelic and ubiquitous expression, 3) Recombination between MADM cassettes on different chromosomes can be used to study reciprocal chromosomal deletions/duplications, and 4) MADM can be modified to permit transgene expression by combining it with a binary expression system. The advances described in this study expand current, and enable new and more versatile applications of MADM
Dynamic modulation of pulsatile activities of oxytocin neurons in lactating wild-type mice.
Breastfeeding, which is essential for the survival of mammalian infants, is critically mediated by pulsatile secretion of the pituitary hormone oxytocin from the central oxytocin neurons located in the paraventricular and supraoptic hypothalamic nuclei of mothers. Despite its importance, the molecular and neural circuit mechanisms of the milk ejection reflex remain poorly understood, in part because a mouse model to study lactation was only recently established. In our previous study, we successfully introduced fiber photometry-based chronic imaging of the pulsatile activities of oxytocin neurons during lactation. However, the necessity of Cre recombinase-based double knock-in mice substantially compromised the use of various Cre-dependent neuroscience toolkits. To overcome this obstacle, we developed a simple Cre-free method for monitoring oxytocin neurons by an adeno-associated virus vector driving GCaMP6s under a 2.6 kb mouse oxytocin mini-promoter. Using this method, we monitored calcium ion transients of oxytocin neurons in the paraventricular nucleus in wild-type C57BL/6N and ICR mothers without genetic crossing. By combining this method with video recordings of mothers and pups, we found that the pulsatile activities of oxytocin neurons require physical mother-pup contact for the milk ejection reflex. Notably, the frequencies of photometric signals were dynamically modulated by mother-pup reunions after isolation and during natural weaning stages. Collectively, the present study illuminates the temporal dynamics of pulsatile activities of oxytocin neurons in wild-type mice and provides a tool to characterize maternal oxytocin functions
Amygdalohippocampal Area Neurons That Project to the Preoptic Area Mediate Infant-Directed Attack in Male Mice
Male animals may show alternative behaviors toward infants: attack or parenting. These behaviors are triggered by pup stimuli under the influence of the internal state, including the hormonal environment and/or social experiences. Converging data suggest that the medial preoptic area (MPOA) contributes to the behavioral selection toward the pup. However, the neural mechanisms underlying how integrated stimuli affect the MPOA-dependent behavioral selection remain unclear. Here we focus on the amygdalohippocampal area (AHi) that projects to MPOA and expresses oxytocin receptor, a hormone receptor mediating social behavior toward pups. We describe the activation of MPOA-projection AHi neurons in male mice by social contact with pups. Input mapping using the TRIO method reveals that MPOA-projection AHi neurons receive prominent inputs from several regions, including the thalamus, hypothalamus, and olfactory cortex. Electrophysiological and histologic analysis demonstrates that oxytocin modulates inhibitory synaptic responses on MPOA-projection AHi neurons. In addition, AHi forms the excitatory monosynapse to MPOA, and pharmacological activation of MPOA-projection AHi neurons enhances only aggressive behavior, but not parental behavior. Interestingly, this promoted behavior was related to social experience in male mice. Collectively, our results identified a presynaptic partner of MPOA that can integrate sensory input and hormonal state, and trigger pup-directed aggression
Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations
Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER T2 is expressed in an activitydependent manner from the loci of the immediate early genes Arc and Fos. Active cells that expres