47 research outputs found

    Effects of oral morphine for pain relief of peripheral arterial disease

    Get PDF
    Peripheral arterial disease often causes ischemic ulcers due to impaired blood flow and consequentially induces intractable pain. For these patients, we have recently begun to administer morphine orally. In this study, we retrospectively examined the effects of oral morphine for the relief of pain caused by peripheral arterial disease. Oral morphine was administered to 17 cases of peripheral arterial disease between January, 2004 and February, 2006. The initial dosage was 5 mg or 10 mg, started on an as-needed basis. After the daily dosage of morphine became constant, we divided the dosage into four or six times a day and administered it regularly. With the exception of one case, a small amount of oral morphine, from 20 mg to 70 mg a day, could alleviate patient's pain. Eight cases had side effects such as nausea, constipation or drowsiness. Oral morphine is effective for pain relief of peripheral arterial disease patients. However, now in Japan, oral morphine, which we can prescribe for those patients with insurance, has a shorter duration of action, so we need to administer slow-release morphine. Oral morphine must be administered carefully because many peripheral arterial disease patients have cardiac disease or renal dysfunction as complications

    Enhanced GATA4 expression in senescent systemic lupus erythematosus monocytes promotes high levels of IFNα production

    Get PDF
    Enhanced interferon α (IFNα) production has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). We previously reported IFNα production by monocytes upon activation of the stimulator of IFN genes (STING) pathway was enhanced in patients with SLE. We investigated the mechanism of enhanced IFNα production in SLE monocytes. Monocytes enriched from the peripheral blood of SLE patients and healthy controls (HC) were stimulated with 2′3′-cyclic GAMP (2′3′-cGAMP), a ligand of STING. IFNα positive/negative cells were FACS-sorted for RNA-sequencing analysis. Gene expression in untreated and 2′3′-cGAMP-stimulated SLE and HC monocytes was quantified by real-time PCR. The effect of GATA binding protein 4 (GATA4) on IFNα production was investigated by overexpressing GATA4 in monocytic U937 cells by vector transfection. Chromatin immunoprecipitation was performed to identify GATA4 binding target genes in U937 cells stimulated with 2′3′-cGAMP. Differentially expressed gene analysis of cGAS-STING stimulated SLE and HC monocytes revealed the enrichment of gene sets related to cellular senescence in SLE. CDKN2A, a marker gene of cellular senescence, was upregulated in SLE monocytes at steady state, and its expression was further enhanced upon STING stimulation. GATA4 expression was upregulated in IFNα-positive SLE monocytes. Overexpression of GATA4 enhanced IFNα production in U937 cells. GATA4 bound to the enhancer region of IFIT family genes and promoted the expressions of IFIT1, IFIT2, and IFIT3, which promote type I IFN induction. SLE monocytes with accelerated cellular senescence produced high levels of IFNα related to GATA4 expression upon activation of the cGAS-STING pathway

    Effects of behavioural activation on the neural circuit related to intrinsic motivation

    Get PDF
    [Background] Behavioural activation is an efficient treatment for depression and can improve intrinsic motivation. Previous studies have revealed that the frontostriatal circuit is involved in intrinsic motivation; however, there are no data on how behavioural activation affects the frontostriatal circuit. [Aims] We aimed to investigate behavioural activation-related changes in the frontostriatal circuit. [Method] Fifty-nine individuals with subthreshold depression were randomly assigned to either the intervention or non-intervention group. The intervention group received five weekly behavioural activation sessions. The participants underwent functional magnetic resonance imaging scanning on two separate occasions while performing a stopwatch task based on intrinsic motivation. We investigated changes in neural activity and functional connectivity after behavioural activation. [Results] After behavioural activation, the intervention group had increased activation and connectivity in the frontostriatal region compared with the non-intervention group. The increased activation in the right middle frontal gyrus was correlated with an improvement of subjective sensitivity to environmental rewards. [Conclusions] Behavioural activation-related changes to the frontostriatal circuit advance our understanding of psychotherapy-induced improvements in the neural basis of intrinsic motivation. [Declaration of interest] None.This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas from Japan Society for the Promotion of Science, JSPS (grants 16H06395 and 16H06399), and grant 23118004 from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was partially supported by the programme for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) by Japan Agency for Medical Research and Development, AMED (grant 15dm0207012h0002) and Integrated Research on Depression, Dementia and Development Disorders by AMED (grant 16dm0107093h0001). The funders had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation or review of the manuscript or decision to submit the manuscript for publication

    Mucosal-Associated Invariant T Cells in Autoimmune Diseases

    No full text
    Mucosal-associated invariant T (MAIT) cells are innate T cells restricted by MHC-related molecule 1 (MR1). MAIT cells express semi-invariant T-cell receptors TRAV1-2-TRAJ33/12/20 in humans and TRAV1-TRAJ33 in mice. MAIT cells recognize vitamin B2 biosynthesis derivatives presented by MR1. Similar to other innate lymphocytes, MAIT cells are also activated by cytokines in the absence of exogenous antigens. MAIT cells have the capacity to produce cytokines, such as IFNγ, TNFα, and IL-17, and cytotoxic proteins, including perforin and granzyme B. MAIT cells were originally named after their preferential location in the mucosal tissue of the gut, but they are also abundant in other peripheral organs, including the liver and lungs. In humans, the frequency of MAIT cells is high in peripheral blood, and these cells constitute approximately 5% of circulating CD3+ cells. Their abundance in tissues and rapid activation following stimulation have led to great interest in their function in various types of immune diseases. In this review, first, we will briefly introduce key information of MAIT cell biology required for better understating their roles in immune responses, and then describe how MAIT cells are associated with autoimmune and other immune diseases in humans. Moreover, we will discuss their functions based on information from animal models of autoimmune and immunological diseases

    Enhanced IFN-α production is associated with increased TLR7 retention in the lysosomes of palasmacytoid dendritic cells in systemic lupus erythematosus

    No full text
    Abstract Background Interferon-α (IFN-α) is increased and plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). Plasmacytoid dendritic cells (pDCs) are the main producer of IFN-α, but their IFN-α producing capacity has been shown to be unchanged or reduced when stimulated with a Toll-like receptor 9 (TLR9) agonist in patients with SLE compared to in healthy individuals. In this study, we investigated the IFN-α-producing capacity of lupus pDCs under different stimulation. Methods pDCs from patients with SLE and healthy controls (HC) were stimulated with TLR9 or TLR7 agonist, and their IFN-α producing capacity was examined by intracellular cytokine staining and flow cytometry. The correlation of IFN-α-producing capacity with serum IFN-α levels and disease activity was assessed. The effect of in vitro IFN-α exposure on IFN-α production by pDCs was examined. Localization of TLR7 in cellular compartments in pDCs was investigated. Results The IFN-α producing capacity of pDCs was reduced after TLR9 stimulation, but increased when stimulated with a TLR7 agonist in SLE compared to in HC. IFN-α production by pDCs upon TLR9 stimulation was reduced and the percentage of IFN-α+pDC was inversely correlated with disease activity and serum IFN-α levels. However, the TLR7 agonist-induced IFN-α producing capacity of lupus pDCs was enhanced and correlated with disease activity and serum IFN-α. Exposure to IFN-α enhanced IFN-α production of TLR7-stimulated pDCs, but reduced that of pDCs activated with a TLR9 agonist. TLR7 localization was increased in late endosome/lysosome compartments in pDCs from SLE patients. Conclusions These findings indicate that enhanced TLR7 responses of lupus pDCs, owing to TLR7 retention in late endosome/lysosome and exposure to IFN-α, are associated with the pathogenesis of SLE

    The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models

    No full text
    <div><p>Autoimmune diseases are influenced by both genetic and environmental factors. The gut environment has attracted much attention as an essential component that modulates immune responses, and therefore immune-mediated disorders, such as autoimmune diseases. Growing evidence suggests that microbiota and their metabolites are critical factors for immune modulation. Recently, we reported that the microbiome in patients with multiple sclerosis, an autoimmune disease targeting the myelin sheath of the central nervous system, is characterized by a reduction of bacteria belonging to <i>Clostridia</i> clusters IV and XIVa, which are potent producers of short-chain fatty acids (SCFAs) by fermentation of indigestible carbohydrates. In the present study, we investigated the role of SCFAs in the regulation of inflammation. We demonstrated that oral administration of SCFAs ameliorated the disease severity of systemic autoimmune inflammatory conditions mediated by lymphocytes such as experimental autoimmune encephalitis and collagen-induced arthritis. Amelioration of disease was associated with a reduction of Th1 cells and an increase in regulatory T cells. In contrast, SCFAs contributed to the exaggeration of K/BxN serum transfer arthritis, representing the effector phase of inflammation in rheumatoid arthritis. An increased understanding of the effect of microbiota metabolites will lead to the effective treatment and prevention of systemic inflammatory disorders.</p></div
    corecore