2,016 research outputs found
Lock acquisition studies for advanced interferometers
This document describes some results of time domain simulation for a Fabry-Perot cavity with Advanced LIGO parameters. Future interferometer will employ a high power laser and high finesse cavities. Lock acquisition of arm cavity will be more difficult due to the optical instabilities which are caused by very high power inside the cavity. According to this simulation, the arm cavity should be locked with very low power, and additional hard/software techniques will be needed to establish the first fringe lock. In this paper, possibility of using a new algorithm called 'Guidelock' and a suspension point interferometer are discussed. After lock is acquired, alignment controls must be engaged before increasing the power. This simulation predicts that alignment optical instabilities show up due to a shift of high power beam axis, and they can be stabilized by proper alignment controls
Deployment mechanisms on Pioneer Venus probes
Deployment mechanisms were developed to position scientific instruments during probe descent into the Venus atmosphere. Each mechanism includes a provision for pyrotechnic release of the enclosure door, negator springs for positive deployment torque, and an active damper using a shunted dc motor. The deployment time requirement is under 2 seconds, and the deployment shock must be less than 100 g's. The mechanism is completely dry lubricated and constructed mainly of titanium for high strength and high temperature stability. The mechanism was qualified for descent decelerations up to 565 g's and for instrument alignment up to 940 F. The mechanism requirements, the hardware design details, the analytical simulations, and the qualification testing are described
Fluctuations in the formation time of ultracold dimers from fermionic atoms
We investigate the temporal fluctuations characteristic of the formation of
molecular dimers from ultracold fermionic atoms via Raman photoassociation. The
quantum fluctuations inherent to the initial atomic state result in large
fluctuations in the passage time from atoms to molecules. Assuming degeneracy
of kinetic energies of atoms in the strong coupling limit we find that a
heuristic classical stochastic model yields qualitative agreement with the full
quantum treatment in the initial stages of the dynamics. We also show that in
contrast to the association of atoms into dimers, the reverse process of
dissociation from a condensate of bosonic dimers exhibits little passage time
fluctuations. Finally we explore effects due to the non-degeneracy of atomic
kinetic energies.Comment: 7 pages, 6 figure
Dynamical properties of dipolar Fermi gases
We investigate dynamical properties of a one-component Fermi gas with
dipole-dipole interaction between particles. Using a variational function based
on the Thomas-Fermi density distribution in phase space representation, the
total energy is described by a function of deformation parameters in both real
and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi
gas are derived, and then instability of this system is discussed. For a
trapped dipolar Fermi gas, the collective oscillation frequencies are derived
with the energy-weighted sum rule method. The frequencies for the monopole and
quadrupole modes are calculated, and softening against collapse is shown as the
dipolar strength approaches the critical value. Finally, we investigate the
effects of the dipolar interaction on the expansion dynamics of the Fermi gas
and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy
Phase separation in a boson-fermion mixture of Lithium atoms
We use a semiclassical three-fluid model to analyze the conditions for
spatial phase separation in a mixture of fermionic Li-6 and a (stable)
Bose-Einstein condensate of Li-7 atoms under cylindrical harmonic confinement,
both at zero and finite temperature. We show that with the parameters of the
Paris experiment [F. Schrek et al., Phys. Rev. Lett. 87 080403 (2001)] an
increase of the boson-fermion scattering length by a factor five would be
sufficient to enter the phase-separated regime. We give examples of
configurations for the density profiles in phase separation and estimate that
the transition should persist at temperatures typical of current experiments.
For higher values of the boson-fermion coupling we also find a new phase
separation between the fermions and the bosonic thermal cloud at finite
temperature.Comment: 8 pages, 4 figures, new version of Fig. 4 and typos correcte
Bose-Fermi Mixtures in One Dimension
We analyze the phase stability and the response of a mixture of bosons and
spin-polarized fermions in one dimension (1D). Unlike in 3D, phase separation
happens for low fermion densities. The dynamics of the mixture at low energy is
independent of the spin-statistics of the components, and zero-sound-like modes
exist that are essentially undamped.Comment: 5 pages; 1 figur
- …