1,241 research outputs found
Calculation Of Pressure Rise And Energy Of Hot Gases Due To High Energy Arcing Faults In The Metal-clad Switchgear
This paper presents the 3-D CFD calculation results of the pressure rise due to the High Energy Arcing Faults (HEAFs) in the metal-clad switchgears. The calculations were performed considering the came-off of the roof panel that was observed in the arc tests. The calculated pressure development approximately agreed with the measured one. Furthermore, the energy of hot gases exhausted from the broken roof panel was calculated to investigate the thermal effect of hot gases
NEU3 (sialidase 3 (membrane sialidase))
Review on NEU3 (sialidase 3 (membrane sialidase)), with data on DNA, on the protein encoded, and where the gene is implicated
Protein processing characterized by a gel-free proteomics approach
We describe a method for the specific isolation of representative N-terminal peptides of proteins and their proteolytic fragments. Their isolation is based on a gel-free, peptidecentric proteomics approach using the principle of diagonal chromatography. We will indicate that the introduction of an altered chemical property to internal peptides holding a free α-N-terminus results in altered column retention of these peptides, thereby enabling the isolation and further characterization by mass spectrometry of N-terminal peptides. Besides pointing to changes in protein expression levels when performing such proteome surveys in a differential modus, protease specificity and substrate repertoires can be allocated since both are specified by neo-N-termini generated after a protease cleavage event. As such, our gel-free proteomics technology is widely applicable and amenable for a variety of proteome-driven protease degradomics research
Converged ab initio calculations of heavy nuclei
We propose a novel storage scheme for three-nucleon (3N) interaction matrix
elements relevant for the normal-ordered two-body approximation used
extensively in ab initio calculations of atomic nuclei. This scheme reduces the
required memory by approximately two orders of magnitude, which allows the
generation of 3N interaction matrix elements with the standard truncation of
, well beyond the previous limit of 18. We demonstrate that this
is sufficient to obtain ground-state energies in Sn converged to within
a few MeV with respect to the truncation. In addition, we study the
asymptotic convergence behavior and perform extrapolations to the un-truncated
limit. Finally, we investigate the impact of truncations made when evolving
free-space 3N interactions with the similarity renormalization group. We find
that the contribution of blocks with angular momentum is
dominated by a basis-truncation artifact which vanishes in the large-space
limit, so these computationally expensive components can be neglected. For the
two sets of nuclear interactions employed in this work, the resulting binding
energy of Sn agrees with the experimental value within theoretical
uncertainties. This work enables converged ab initio calculations of heavy
nuclei.Comment: 13 pages, 10 figure
Magnetic dipole operator from chiral effective field theory for many-body expansion methods
Many-body approaches for atomic nuclei generally rely on a basis expansion of
the nuclear states, interactions, and current operators. In this work, we
derive the representation of the magnetic dipole operator in plane-wave and
harmonic-oscillator basis states, as needed for Faddeev calculations of
few-body systems or many-body calculations within, e.g., the no-core shell
model, the in-medium renormalization group, coupled-cluster theory, or the
nuclear shell model. We focus in particular on the next-to-leading-order
two-body contributions derived from chiral effective field theory. We provide
detailed benchmarks and also comparisons with quantum Monte Carlo results for
three-body systems. The derived operator matrix elements represent the basic
input for studying magnetic properties of atomic nuclei based on chiral
effective field theory.Comment: 17 pages, 7 figure
Anti-self-dual Maxwell solutions on hyperk\"ahler manifold and N=2 supersymmetric Ashtekar gravity
Anti-self-dual (ASD) Maxwell solutions on 4-dimensional hyperk\"ahler
manifolds are constructed. The N=2 supersymmetric half-flat equations are
derived in the context of the Ashtekar formulation of N=2 supergravity. These
equations show that the ASD Maxwell solutions have a direct connection with the
solutions of the reduced N=2 supersymmetric ASD Yang-Mills equations with a
special choice of gauge group. Two examples of the Maxwell solutions are
presented.Comment: 9 page
- …