19 research outputs found

    Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation

    Get PDF
    SummaryTrans-acting siRNA form through a refined RNAi mechanism in plants. miRNA-guided cleavage triggers entry of precursor transcripts into an RNA-DEPENDENT RNA POLYMERASE6 pathway, and sets the register for phased tasiRNA formation by DICER-LIKE4. Here, we show that miR390-ARGONAUTE7 complexes function in distinct cleavage or noncleavage modes at two target sites in TAS3a transcripts. The AGO7 cleavage, but not the noncleavage, function could be provided by AGO1, the dominant miRNA-associated AGO, but only when AGO1 was guided to a modified target site through an alternate miRNA. AGO7 was highly selective for interaction with miR390, and miR390 in turn was excluded from association with AGO1 due entirely to an incompatible 5′ adenosine. Analysis of AGO1, AGO2, and AGO7 revealed a potent 5′ nucleotide discrimination function for some, although not all, ARGONAUTEs. miR390 and AGO7, therefore, evolved as a highly specific miRNA guide/effector protein pair to function at two distinct tasiRNA biogenesis steps

    High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes

    Get PDF
    In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks

    Pattern formation via small RNA mobility

    Get PDF
    MicroRNAs and trans-acting siRNAs (ta-siRNAs) have important regulatory roles in development. Unlike other developmentally important regulatory molecules, small RNAs are not known to act as mobile signals during development. Here, we show that low-abundant, conserved ta-siRNAs, termed tasiR-ARFs, move intercellularly from their defined source of biogenesis on the upper (adaxial) side of leaves to the lower (abaxial) side to create a gradient of small RNAs that patterns the abaxial determinant AUXIN RESPONSE FACTOR3. Our observations have important ramifications for the function of small RNAs and suggest they can serve as mobile, instructive signals during development

    Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting

    No full text
    Posttranscriptional RNA silencing of many endogenous transcripts, viruses, and transgenes involves the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 (RDR6/DCL4)-dependent short interfering RNA (siRNA) biogenesis pathway. Arabidopsis thaliana contains several families of trans-acting siRNAs (tasiRNAs) that form in 21-nucleotide phased arrays through the RDR6/DCL4-dependent pathway and that negatively regulate target transcripts. Using deep sequencing technology and computational approaches, the phasing patterns of known tasiRNAs and tasiRNA-like loci from across the Arabidopsis genome were analyzed in wild-type plants and silencing-defective mutants. Several gene transcripts were found to be routed through the RDR6/DCL4-dependent pathway after initial targeting by one or multiple miRNAs or tasiRNAs, the most conspicuous example of which was an expanding clade of genes encoding pentatricopeptide repeat (PPR) proteins. Interestingly, phylogenetic analysis using Populus trichocarpa revealed evidence for small RNA–mediated regulatory mechanisms within a similarly expanded group of PPR genes. We suggest that posttranscriptional silencing mechanisms operate on an evolutionary scale to buffer the effects of rapidly expanding gene families

    Figure 4

    No full text
    <p>Identification of <i>MIRNA</i> foldbacks with similarity to protein-coding genes. (A) Flowchart for identification of <i>MIRNA</i> foldbacks with similarity, extending beyond the miRNA target site, to protein-coding genes. (B) <i>Arabidopsis</i> gene or transcript hits in FASTA searches using foldback sequences for all conserved and non-conserved <i>MIRNA</i> loci (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000219#pone-0000219-t001" target="_blank">Tables 1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000219#pone-0000219-t002" target="_blank">2</a>). The top four hits based on E-values are shown. (C) Z-scores for the Needleman-Wunche alignment values from <i>MIRNA</i> foldback arms with top four gene or transcript FASTA hits. Alignments were done with intact foldback arms (I), and with foldback arms in which miRNA or miRNA-complementary sequences were deleted (D). Z-scores were derived from standard deviation values for alignments of randomized sequences. In (B) and (C), a red symbol represents an experimentally validated target, a pink symbol indicates a gene from a validated target family, and an open symbol indicates a gene that is distinct from either the validated or predicted target family.</p
    corecore