92 research outputs found

    Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons

    Get PDF
    The mechanisms that generate robust ionic oscillation in circadian pacemaker neurons are under investigation. Here, we demonstrate critical functions of the mitochondrial cation antiporter leucine zipper- EF-hand-containing transmembrane protein 1 (LETM1), which exchanges K+/H+ in Drosophila and Ca2+/H+ in mammals, in circadian pacemaker neurons. Letm1 knockdown in Drosophila pacemaker neurons reduced circadian cytosolic H+ rhythms and prolonged nuclear PERIOD/TIMELESS expression rhythms and locomotor activity rhythms. In rat pacemaker neurons in the hypothalamic suprachiasmatic nucleus (SCN), circadian rhythms in cytosolic Ca2+ and Bmal1 transcription were dampened by Letm1 knockdown. Mitochondrial Ca2+ uptake peaks late during the day were also observed in rat SCN neurons following photolytic elevation of cytosolic Ca2+. Since cation transport by LETM1 is coupled to mitochondrial energy synthesis, we propose that LETM1 integrates metabolic, ionic, and molecular clock rhythms in the central clock system in both invertebrates and vertebrates

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Potential value of saline-induced Pd/Pa ratio in patients with coronary artery stenosis

    Get PDF
    BackgroundFractional flow reserve (FFR) is the current gold standard for identifying myocardial ischemia in individuals with coronary artery stenosis. However, FFR is not penetrated as much worldwide due to time consumption, costs associated with adenosine, FFR-related discomfort, and complications. Resting physiological indexes may be widely accepted alternatives to FFR, while the discrepancies with FFR were found in up to 20% of lesions. The saline-induced Pd/Pa ratio (SPR) is a new simplified option for evaluating coronary stenosis. However, the clinical implication of SPR remains unclear.ObjectivesIn the present study, we aimed to compare the accuracies of SPR and resting full-cycle ratio (RFR) and to investigate the incremental value of SPR in clinical practice.MethodsIn this multicenter prospective study, 112 coronary lesions (105 patients) were evaluated by SPR, RFR, and FFR.ResultsThe overall median age was 71 years, and 84.8% were men. SPR was correlated more strongly with FFR than with RFR (r = 0.874 vs. 0.713, respectively; p < 0.001). Using FFR < 0.80 as the reference standard variable, the area under the receiver-operating characteristic (ROC) curve for SPR was superior to that of RFR (0.932 vs. 0.840, respectively; p = 0.009).ConclusionSaline-induced Pd/Pa ratio predicted FFR more accurately than RFR. SPR could be an alternative method for evaluating coronary artery stenosis and further investigation including elucidation of the mechanism of SPR is needed (225 words)

    A developmental model for branching morphogenesis of lake cress compound leaf

    Get PDF
    Lake cress, Rorippa aquatica (Brassicaceae), is a semi-aquatic plant that exhibits a variety of leaf shapes, from simple leaves to highly branched compound leaves, depending on the environment. Leaf shape can vary within a single plant, suggesting that the variation can be explained by a simple model. In order to simulate the branched structure in the compound leaves of R. aquatica, we implemented reaction-diffusion (RD) patterning onto a theoretical framework that had been developed for serration distribution in the leaves of Arabidopsis thaliana, with the modification of the one-dimensional reaction-diffusion domain being deformed with the spatial periodicity of the RD pattern while expanding. This simple method using an iterative pattern could create regular and nested branching patterns. Subsequently, we verified the plausibility of our theoretical model by comparing it with the experimentally observed branching patterns. The results suggested that our model successfully predicted both the qualitative and quantitative aspects of the timing and positioning of branching in growing R. aquatica leaves

    Molecular evolution of vertebrate sex-determining genes

    Get PDF
    Y-linked Dmy (also called dmrt1bY) in the teleost fish medaka, W-linked Dm-W in the African clawed frog (Xenopus laevis), and Z-linked Dmrt1 in the chicken are all sex chromosome-linked Dmrt1 homologues required for sex determination. Dmy and Dm-W both are Dmrt1 palalogues evolved through Dmrt1 duplication, while chicken Dmrt1 is a Z-linked orthologue. The eutherian sex-determining gene, Sry, evolved from an allelic gene, Sox3. Here we analyzed the exon–intron structures of the Dmrt1 homologues of several vertebrate species through information from databases and by determining the transcription initiation sites in medaka, chicken, Xenopus, and mouse. Interestingly, medaka Dmrt1 and Dmy and Xenopus Dm-W and Dmrt1 have a noncoding-type first exon, while mouse and chicken Dmrt1 do not. We next compared the 5′-flanking sequences of the Dmrt1 noncoding and coding exons 1 of several vertebrate species and found conservation of the presumptive binding sites for some transcription factors. Importantly, based on the phylogenetic trees for Dmrt1 and Sox3 homologues, it was implied that the sex-determining gene Dmy, Dm-W, and Sry have a higher substitution rate than thier prototype genes. Finally, we discuss the evolutionary relationships between vertebrate sex chromosomes and the sex-determining genes Dmy/Dm-W and Sry, which evolved by neofunctionalization of Dmrt1 and Sox3, respectively, for sex determining function. We propose a coevolution model of sex determining gene and sex chromosome, in which undifferentiated sex chromosomes easily allow replacement of a sex-determining gene with another new one, while specialized sex chromosomes are restricted a particular sex-determining gene

    Application of “chronotoxicology” to occupational health

    No full text

    Sensitization potential of dental resins: 2-hydroxyethyl methacrylate and its water-soluble oligomers have immunostimulatory effects.

    Get PDF
    The immunostimulatory effects of the representative dental resin monomer 2-hydroxyethyl methacrylate (HEMA), a HEMA derivative that does not contain a double bond (2-hydroxyethyl isobutyrate, HEIB), and polymerized water-soluble oligomers of HEMA (PHEMA) were investigated. It is known that expression levels of either or both of CD54 and CD86 in THP-1 cells are increased by exposure to sensitizing substances. In this study, the expression levels of CD54 and CD86, the production of reactive oxygen species (ROS), and the viability of the cells were measured after 24 h of incubation with these materials at different concentrations. The concentrations of the materials that induced the expression of both CD54 and CD86 were low in the following order: NiSO4, HEMA, and methyl methacrylate (MMA). These results indicate that these dental resin monomers have lower sensitizing potentials than NiSO4. Although HEIB, which lacks a double bond, resulted in negligible ROS production and reduced cytotoxicity than HEMA, it induced the expression of CD54 and CD86. Comparison of the results for HEMA and HEIB indicates that dental resin monomer-induced sensitization may be related not only to the oxidative stress related to the methacryloyl group but also to the structures of these compounds. Of particular interest is the result that a water-soluble PHEMA oligomer with a relatively high-molecular weight also exhibited negligible cytotoxicity, whereas the expression level of CD54 increased after exposure to PHEMA at a high concentration. This result serves as a warning that polymerized substances also have the potential to induce sensitization. This study provides insight into the nature of allergic responses to dental resin materials in clinical use and may facilitate the development of more biocompatible restorative materials in the future
    corecore