8,738 research outputs found
An annotated bibliography of materials suitable for use in teaching French in the elementary school
Thesis (Ed.M.)--Boston Universit
The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution
We investigate through high resolution 3D simulations the nonlinear evolution
of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz
instability. We confirm in 3D flows the conclusion from our 2D work that even
apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma
flows can be fundamentally important to nonlinear evolution of the instability.
In fact, that statement is strengthened in 3D by this work, because it shows
how field line bundles can be stretched and twisted in 3D as the quasi-2D Cat's
Eye vortex forms out of the hydrodynamical motions. In our simulations twisting
of the field may increase the maximum field strength by more than a factor of
two over the 2D effect. If, by these developments, the Alfv\'en Mach number of
flows around the Cat's Eye drops to unity or less, our simulations suggest
magnetic stresses will eventually destroy the Cat's Eye and cause the plasma
flow to self-organize into a relatively smooth and apparently stable flow that
retains memory of the original shear. For our flow configurations the regime in
3D for such reorganization is , expressed in
terms of the Alfv\'en Mach number of the original velocity transition and the
initial Alfv\'en speed projected to the flow plan. For weaker fields the
instability remains essentially hydrodynamic in early stages, and the Cat's Eye
is destroyed by the hydrodynamic secondary instabilities of a 3D nature. Then,
the flows evolve into chaotic structures that approach decaying isotropic
turbulence. In this stage, there is considerable enhancement to the magnetic
energy due to stretching, twisting, and turbulent amplification, which is
retained long afterwards. The magnetic energy eventually catches up to the
kinetic energy, and the nature of flows become magnetohydrodynamic.Comment: 11 pages, 12 figures in degraded jpg format (2 in color), paper with
original quality figures available via ftp at
ftp://ftp.msi.umn.edu/pub/users/twj/mhdkh3dd.ps.gz or
ftp://canopus.chungnam.ac.kr/ryu/mhdkh3dd.ps.gz, to appear in The
Astrophysical Journa
Electronic structure and effects of dynamical electron correlation in ferromagnetic bcc-Fe, fcc-Ni and antiferromagnetic NiO
LDA+DMFT method in the framework of the iterative perturbation theory (IPT)
with full LDA Hamiltonian without mapping onto the effective Wannier orbitals.
We then apply this LDA+DMFT method to ferromagnetic bcc-Fe and fcc-Ni as a test
of transition metal, and to antiferromagnetic NiO as an example of transition
metal oxide. In Fe and Ni, the width of occupied 3d bands is narrower than
those in LDA and Ni 6eV satellite appears. In NiO, the resultant electronic
structure is of charge-transfer insulator type and the band gap is 4.3eV. These
results are in good agreement with the experimental XPS. The configuration
mixing and dynamical correlation effects play a crucial role in these results
Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes
The effect of anchoring group on the electrical conductance of a single
molecule bridging two Au electrodes was studied using di-substituted
(isocyanide (CN-), thiol (S-) or cyanide (NC-)) benzene. The conductance of a
single Au/1,4-diisocyanobenzene/Au junction anchored by isocyanide via a C atom
(junction with the Au-CN bond) was (). The
value was comparable to of a single
Au/1,4-benzenedithiol/Au junction with the Au-S bond. The
Au/1,4-dicyanobenzene/Au molecular junction with the Au-NC bond did not show
well-defined conductance values. The metal-molecule bond strength was estimated
by the distance over which the molecular junction was stretched before
breakdown. The stretched length of the molecular junction with the Au-CN bond
was comparable to that of the Au junction, indicating that the Au-CN bond was
stronger than the Au-Au bond.Comment: 3 figures, to be appear in Appl. Phys. Let
Mediators of mechanotransduction between bone cells
Mechanical forces are known to regulate the function of tissues in the body, including bone. Bone adapts to its mechanical environment by altering its shape and increasing its size in response to increases in mechanical load associated with exercise, and by decreasing its size in response to decreases in mechanical load associated with microgravity or prolonged bed rest. Changes in bone size and shape are produced by a cooperative action of two main types of the bone cells - osteoclasts that destroy bone and osteoblasts that build bone. These cell types come from different developmental origins, and vary greatly in their characteristics, such as size, shape, and expression of receptor subtypes, which potentially may affect their responses to mechanical stimuli. The objective of this study is to compare the responses of osteoclasts and osteoblasts to mechanical stimulation.
This study has allowed us to conclude the following:
1. A mediator is released from a single source cell.
2. The response to the mediator changes with distance.
3. The value of the apparent diffusion coeficient increases with distance.
4. A plausible proposed mechanism is that ATP is released and degrades to ADP.
5. Future experiments are required to confim that ATP is the mediator as suggested
Structural Transition of Li2RuO3 Induced by Molecular-Orbit Formation
A pseudo honeycomb system Li2RuO3 exhibits a second-order-like transition at
temperature T=Tc=540 K to a low-T nonmagnetic phase with a significant lattice
distortion forming Ru-Ru pairs. For this system, we have calculated the band
structure, using the generalized gradient approximation (GGA) in both the high-
and low- T phases, and found that the results of the calculation can naturally
explain the insulating behavior observed in the low-T phase. The detailed
characters of the Ru 4d t2g bands obtained by the tight-binding fit to the
calculated dispersion curves show clear evidence that the structural transition
is driven by the formation of the Ru-Ru molecular-orbits, as proposed in our
previous experimental studies.Comment: 5 pages, 5 figures, 4 tables, submitted to J. Phys. Soc. Jp
On the Null Vectors in the Spectra of the 2D Integrable Hierarchies
We propose an alternative description of the spectrum of local fields in the
classical limit of the integrable quantum field theories. It is close to
similar constructions used in the geometrical treatment of W-gravities. Our
approach provides a systematic way of deriving the null-vectors that appear in
this construction. We present explicit results for the case of the
A_1^{1}-(m)KdV and the A_2^{2}-(m)KdV hierarchies, different classical limits
of 2D CFT's. In the former case our results coincide with the classical limit
of the construction of Babelon, Bernard and Smirnov.Some hints about
quantization and off-critical treatment are also given.Comment: 15 pages, LATEX file, to appear in Phys.Lett.
Synthesis and Properties of Dipyridylcyclopentenes
A short and general route to the substituted dipyridylcyclopentenes was explored and several new compounds belonging to this new group of diarylethenes were synthesized. The study of their photochromic and thermochromic properties shows that the rate of the thermal ring opening is strongly dependent on the polarity of the solvent.
- …