7 research outputs found

    Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes

    No full text
    We engineered small molecule responsive allosteric ribozymes based on the genomic hepatitis delta virus (HDV) ribozyme by replacing the P4-L4 stem-loop with an RNA aptamer through a connector stem. When embedded in the 3′ untranslated region of a reporter gene mRNA, these RNA devices enabled regulation of <i>cis</i>-gene expression by theophylline and guanine by up to 29.5-fold in mammalian cell culture. Furthermore, a NOR logic gate device was constructed by placing two engineered ribozymes in tandem, demonstrating the modularity of the RNA devices. The significant improvement in the regulatory dynamic range (ON/OFF ratio) of the RNA devices based on the HDV ribozyme should provide new opportunities for practical applications

    Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina

    No full text
    Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 (−/−) mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity
    corecore