278 research outputs found

    Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes

    No full text
    Brain lateralization is commonly interpreted as crucial for human brain function and cognition. However, as comparative studies among primates are rare, it is not known which aspects of lateralization are really uniquely human. Here, we quantify both pattern and magnitude of brain shape asymmetry based on endocranial imprints of the braincase in humans, chimpanzees, gorillas, and orangutans. Like previous studies, we found that humans were more asymmetric than chimpanzees, however so were gorillas and orangutans, highlighting the need to broaden the comparative framework for interpretation. We found that the average spatial asymmetry pattern, previously considered to be uniquely human, was shared among humans and apes. In humans, however, it was less directed, and different local asymmetries were less correlated. We, thus, found human asymmetry to be much more variable compared with that of apes. These findings likely reflect increased functional and developmental modularization of the human brain

    Three-dimensional analysis of sexual dimorphism in ribcage kinematics of modern humans

    Get PDF
    Objectives: Sexual dimorphism is an important biological factor underlying morphological variation in the human skeleton. Previous research found sex-related differences in the static ribcage, with males having more horizontally oriented ribs and a wider lower ribcage than females. Furthermore, a recent study found sex-related differences in the kinematics of the human lungs, with cranio-caudal movements of the caudal part of the lungs accounting for most of the differences between sexes. However, these movements cannot be quantified in the skeletal ribcage, so we do not know if the differences observed in the lungs are also reflected in sex differences in the motion of the skeletal thorax. Materials and methods: To address this issue, we quantified the morphological variation of 42 contemporary human ribcages (sex-balanced) in both maximal inspiration and expiration using 526 landmarks and semilandmarks. Thoracic centroid size differences between sexes were assessed using a t test, and shape differences were assessed using Procrustes shape coordinates, through mean comparisons and dummy regressions of shape on kinematic status. A principal components analysis was used to explore the full range of morphological variation. Results: Our results show significant size differences between males and females both in inspiration and expiration (p <.01) as well as significant shape differences, with males deforming more than females during inspiration, especially in the mediolateral dimension of the lower ribcage. Finally, dummy regressions of shape on kinematic status showed a small but statistically significant difference in vectors of breathing kinematics between males and females (14.78°; p <.01). Discussion: We support that sex-related differences in skeletal ribcage kinematics are discernible, even when soft tissues are not analyzed. We hypothesize that this differential breathing pattern is primarily a result of more pronounced diaphragmatic breathing in males, which might relate to differences in body composition, metabolism, and ultimately greater oxygen demand in males compared to females. Future research should further explore the links between ribcage morphological variation and basal metabolic rate

    There is an obstetrical dilemma: Misconceptions about the evolution of human childbirth and pelvic form

    Get PDF
    Compared to other primates, modern humans face high rates of maternal and neonatal morbidity and mortality during childbirth. Since the early 20th century, this "difficulty" of human parturition has prompted numerous evolutionary explanations, typically assuming antagonistic selective forces acting on maternal and fetal traits, which has been termed the "obstetrical dilemma." Recently, there has been a growing tendency among some anthropologists to question the difficulty of human childbirth and its evolutionary origin in an antagonistic selective regime. Partly, this stems from the motivation to combat increasing pathologization and overmedicalization of childbirth in industrialized countries. Some authors have argued that there is no obstetrical dilemma at all, and that the difficulty of childbirth mainly results from modern lifestyles and inappropriate and patriarchal obstetric practices. The failure of some studies to identify biomechanical and metabolic constraints on pelvic dimensions is sometimes interpreted as empirical support for discarding an obstetrical dilemma. Here we explain why these points are important but do not invalidate evolutionary explanations of human childbirth. We present robust empirical evidence and solid evolutionary theory supporting an obstetrical dilemma, yet one that is much more complex than originally conceived in the 20th century. We argue that evolutionary research does not hinder appropriate midwifery and obstetric care, nor does it promote negative views of female bodies. Understanding the evolutionary entanglement of biological and sociocultural factors underlying human childbirth can help us to understand individual variation in the risk factors of obstructed labor, and thus can contribute to more individualized maternal care

    Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae)

    Get PDF
    Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.Fil: Duport Bru, Ana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Ponssa, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentin

    Assessing the reliability of virtual reconstruction of mandibles

    Get PDF
    OBJECTIVES: Mandibular morphological variation is often used to examine various aspects of human palaeobiology. However, fossil and archeological skeletal remains are often fragmented/distorted and so are frequently excluded from studies. This leads to decreased sample sizes and, potentially, to biased results. Thus, it is of interest to restore the original anatomy of incomplete/distorted specimens. Thin plate splines (TPS), commonly used in Geometric Morphometrics (GM), offer the prospect of reconstruction of missing parts and particularly of interest here, missing landmarks. MATERIALS AND METHODS: Here, the reliability of TPS based mandibular reconstruction is tested. To that end missing landmarks were simulated in originally complete hemimandibles. TPS was then used to restore the location of simulated missing data and the predicted landmarks were compared to the original ones. RESULTS: Results show that error varies according to the number and location of estimated landmarks. Notwithstanding, estimation error is usually considerably smaller than the morphological differences between individuals from the same species. DISCUSSION: TPS based reconstruction allows fragmentary mandibles to be used in studies of whole mandibular variation, provided the above mentioned caveats are considered

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans
    • …
    corecore