253 research outputs found

    The eNMR platform for structural biology

    Get PDF
    The e-NMR project is a European cooperation initiative that aims at providing the bio-NMR user community with a software platform integrating and streamlining the computational approaches necessary for the analysis of bio-NMR data. The e-NMR platform is based on a Grid computational infrastructure. A main focus of the current implementation of the e-NMR platform is on streamlining structure determination protocols. Indeed, to facilitate the use of NMR spectroscopy in the life sciences, the eNMR consortium has set out to provide protocolized services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle specific requests by expert users. Various programs relevant for structural biology applications are already available through the e-NMR portal, including HADDOCK, XPLOR-NIH, CYANA and csRosetta. The implementation of these services, and in particular the distribution of calculations to the GRID infrastructure, has required the development of specific tools. However, the GRID infrastructure is maintained completely transparent to the users. With more than 150 registered users, eNMR is currently the second largest European Virtual Organization in the life sciences

    Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr

    Get PDF
    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [H-1, C-13]-D-glucose in similar to 100% D2O, which yields CHD2 methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using C-13 TOCSY NMR spectroscopy, as was recently demonstrated (Often, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure H-1 CPMG relaxation dispersion profiles for CHD2 methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-delta 1 and Thr-gamma 2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong C-13 scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone N-15 CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the H-1 line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 +/- 0.5) x 10(3) per second (i.e., tau(ex) = 64.7 +/- 1.9 mu s). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by H-1 CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone N-15 relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins

    Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange

    Get PDF
    Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to the −z direction, Larmor precession is impeded since magnetization becomes spin-locked, which is a potentially useful feature for the investigation of microsecond to millisecond dynamics. A major drawback of these pulses as theoretical prediction is concerned, however, results from their time-dependent offset: simulations of spin density matrices under the influence of a time-dependent Hamiltonian with non-commuting elements are costly in terms of computational time, rendering data analysis impracticable. In this paper we suggest several ways to reduce the computational time without compromising accuracy with respect to effects such as cross-correlated relaxation and modulation of the chemical shift

    Accessing ns–μs side chain dynamics in ubiquitin with methyl RDCs

    Get PDF
    This study presents the first application of the model-free analysis (MFA) (Meiler in J Am Chem Soc 123:6098–6107, 2001; Lakomek in J Biomol NMR 34:101–115, 2006) to methyl group RDCs measured in 13 different alignment media in order to describe their supra-τc dynamics in ubiquitin. Our results indicate that methyl groups vary from rigid to very mobile with good correlation to residue type, distance to backbone and solvent exposure, and that considerable additional dynamics are effective at rates slower than the correlation time τc. In fact, the average amplitude of motion expressed in terms of order parameters S2 associated with the supra-τc window brings evidence to the existence of fluctuations contributing as much additional mobility as those already present in the faster ps-ns time scale measured from relaxation data. Comparison to previous results on ubiquitin demonstrates that the RDC-derived order parameters are dominated both by rotameric interconversions and faster libration-type motions around equilibrium positions. They match best with those derived from a combined J-coupling and residual dipolar coupling approach (Chou in J Am Chem Soc 125:8959–8966, 2003) taking backbone motion into account. In order to appreciate the dynamic scale of side chains over the entire protein, the methyl group order parameters are compared to existing dynamic ensembles of ubiquitin. Of those recently published, the broadest one, namely the EROS ensemble (Lange in Science 320:1471–1475, 2008), fits the collection of methyl group order parameters presented here best. Last, we used the MFA-derived averaged spherical harmonics to perform highly-parameterized rotameric searches of the side chains conformation and find expanded rotamer distributions with excellent fit to our data. These rotamer distributions suggest the presence of concerted motions along the side chains

    Manipulating Protein Conformations By Single-molecule Afm-fret Nanoscopy

    Get PDF
    Combining atomic force microscopy and fluorescence resonance energy transfer spectroscopy (AFM-FRET), we have developed a single-molecule AFM-FRET nanoscopy approach capable of effectively pinpointing and mechanically manipulating a targeted dye-labeled single protein in a large sampling area and simultaneously monitoring the conformational changes of the targeted protein by recording single-molecule FRET time trajectories. We have further demonstrated an application of using this nanoscopy on manipulation of single-molecule protein conformation and simultaneous single-molecule FRET measurement of a Cy3-Cy5-labeled kinase enzyme, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase). By analyzing time-resolved FRET trajectories and correlated AFM force pulling curves of the targeted single-molecule enzyme, we are able to observe the protein conformational changes of a specific coordination by AFM mechanic force pulling

    In Silico Elucidation of the Recognition Dynamics of Ubiquitin

    Get PDF
    Elucidation of the mechanism of biomacromolecular recognition events has been a topic of intense interest over the past century. The inherent dynamic nature of both protein and ligand molecules along with the continuous reshaping of the energy landscape during the binding process renders it difficult to characterize this process at atomic detail. Here, we investigate the recognition dynamics of ubiquitin via microsecond all-atom molecular dynamics simulation providing both thermodynamic and kinetic information. The high-level of consistency found with respect to experimental NMR data lends support to the accuracy of the in silico representation of the conformational substates and their interconversions of free ubiquitin. Using an energy-based reweighting approach, the statistical distribution of conformational states of ubiquitin is monitored as a function of the distance between ubiquitin and its binding partner Hrs-UIM. It is found that extensive and dense sampling of conformational space afforded by the µs MD trajectory is essential for the elucidation of the binding mechanism as is Boltzmann sampling, overcoming inherent limitations of sparsely sampled empirical ensembles. The results reveal a population redistribution mechanism that takes effect when the ligand is at intermediate range of 1–2 nm from ubiquitin. This mechanism, which may be depicted as a superposition of the conformational selection and induced fit mechanisms, also applies to other binding partners of ubiquitin, such as the GGA3 GAT domain

    Determination of Conformational Equilibria in Proteins Using Residual Dipolar Couplings

    Get PDF
    In order to carry out their functions, proteins often undergo significant conformational fluctuations that enable them to interact with their partners. The accurate characterization of these motions is key in order to understand the mechanisms by which macromolecular recognition events take place. Nuclear magnetic resonance spectroscopy offers a variety of powerful methods to achieve this result. We discuss a method of using residual dipolar couplings as replica-averaged restraints in molecular dynamics simulations to determine large amplitude motions of proteins, including those involved in the conformational equilibria that are established through interconversions between different states. By applying this method to ribonuclease A, we show that it enables one to characterize the ample fluctuations in interdomain orientations expected to play an important functional role

    Efficient Identification of Critical Residues Based Only on Protein Structure by Network Analysis

    Get PDF
    Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins

    Does psychological status influence clinical outcomes in patients with inflammatory bowel disease (IBD) and other chronic gastroenterological diseases: An observational cohort prospective study

    Get PDF
    Background: Whether there is a temporal relationship between psychological problems and clinical outcomes in patients with diseases of the digestive tract has not been widely researched. Thus, our aims were 1) To observe and compare prospectively clinical outcomes in relation to psychological co-morbidity in patients with inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and chronic hepatitis C (HCV) and, 2) To test the hypothesis that patients with psychological co-morbidities are less likely to have a satisfactory response to standard treatment at 12 months. Methods: Overall, 139 patients were enrolled in this observational cohort prospective study. Over the ensuing year, physical and psychological measures were made at baseline and after 12 months (HADS, SCL90, SF-12 and disease activity measures). A logistic regression was conducted to observe any relationship between baseline characteristics and patients' clinical outcomes after 12 months. Results: Overall, there was no relationship between psychological status and quality of life at baseline and relapse at 12 months (p > 0.05). However, patients with inactive disease at baseline were at lower risk of relapse after 12 months (OR = 0.046, CI: 0.012–0.178). No significant relationship was found between psychological problems such as depression/anxiety and a total number of relapses in the IBD group. However, interestingly, patients with an active disease at baseline tended to have a greater number of relapses (OR = 3.07, CI: 1.650–5.738) and CD participants were found at lower risk of relapse than UC participants (OR = 0.382, CI: 0.198–0.736). Conclusion: In contrast to previous investigations, this study suggests that there is no temporal relationship between psychological problems at baseline and clinical outcomes over time. Longer and larger prospective studies are needed to better understand this result.Antonina A Mikocka-Walus, Deborah A Turnbull, Nicole T Moulding, Ian G Wilson, Gerald J Holtmann and Jane M Andrew

    Visualizing spatially correlated dynamics that directs RNA conformational transitions

    Full text link
    RNAs fold into three- dimensional ( 3D) structures that subsequently undergo large, functionally important, conformational transitions in response to a variety of cellular signals(1-3). RNA structures are believed to encode spatially tuned flexibility that can direct transitions along specific conformational pathways(4,5). However, this hypothesis has proved difficult to examine directly because atomic movements in complex biomolecules cannot be visualized in 3D by using current experimental methods. Here we report the successful implementation of a strategy using NMR that has allowed us to visualize, with complete 3D rotational sensitivity, the dynamics between two RNA helices that are linked by a functionally important trinucleotide bulge over timescales extending up to milliseconds. The key to our approach is to anchor NMR frames of reference onto each helix and thereby directly measure their dynamics, one relative to the other, using 'relativistic' sets of residual dipolar couplings ( RDCs)(6,7). Using this approach, we uncovered super- large amplitude helix motions that trace out a surprisingly structured and spatially correlated 3D dynamic trajectory. The two helices twist around their individual axes by approximately 536 and 1106 in a highly correlated manner ( R = 0.97) while simultaneously ( R = 0.81 - 0.92) bending by about 94 degrees. Remarkably, the 3D dynamic trajectory is dotted at various positions by seven distinct ligand- bound conformations of the RNA. Thus even partly unstructured RNAs can undergo structured dynamics that directs ligand- induced transitions along specific predefined conformational pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62506/1/nature06389.pd
    corecore