17 research outputs found

    Practical Preclinical Model for Assessing the Potential for Unconjugated Hyperbilirubinemia Produced by Human Immunodeficiency Virus Protease Inhibitors

    No full text
    A practical preclinical model for the hyperbilirubinemia produced by human immunodeficiency virus protease inhibitors has been developed. Indinavir and atazanavir produced significant hyperbilirubinemia, whereas amprenavir, the negative control, was indistinguishable from the ritonavir booster dose. This model was used to disqualify an exploratory protease inhibitor from development

    The Volume of Three-Dimensional Cultures of Cancer Cells In Vitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors

    No full text
    Improving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors. Because confluence, diameter or volume can hypothetically alter TPs, we made intra- and inter-culture comparisons using samples with defined dimensions. As projected by Ingenuity Pathway Analysis (IPA), a limited number of signal transduction pathways operational in vivo were better represented by 3D than by 2D cultures in vitro. Growth of 2D and 3D cultures as well as xenografts induced major changes in the TPs of these 3 modes of culturing. Alterations of transcriptional network activation that were predicted to evolve similarly during progression of 3D cultures and xenografts involved the following functions: hypoxia, proliferation, cell cycle progression, angiogenesis, cell adhesion, and interleukin activation. Direct comparison of TPs of 3D cultures and xenografts to monolayer cultures yielded up-regulation of networks involved in hypoxia, TGF and Wnt signaling as well as regulation of epithelial mesenchymal transition. Differences in TP of 2D and 3D cancer cell cultures are subject to progression of the cultures. The emulation of the predicted cell functions in vivo is therefore not only determined by the type of culture in vitro but also by the confluence or diameter of the 2D or 3D cultures, respectively. Consequently, the successful implementation of 3D models will require phenotypic characterization to verify the relevance of applying these models for drug development

    ABT-414, an Antibody-Drug Conjugate Targeting a Tumor-Selective EGFR Epitope.

    No full text
    Targeting tumor-overexpressed EGFR with an antibody-drug conjugate (ADC) is an attractive therapeutic strategy; however, normal tissue expression represents a significant toxicity risk. The anti-EGFR antibody ABT-806 targets a unique tumor-specific epitope and exhibits minimal reactivity to EGFR in normal tissue, suggesting its suitability for the development of an ADC. We describe the binding properties and preclinical activity of ABT-414, an ABT-806 monomethyl auristatin F conjugate. In vitro, ABT-414 selectively kills tumor cells overexpressing wild-type or mutant forms of EGFR. ABT-414 inhibits the growth of xenograft tumors with high EGFR expression and causes complete regressions and cures in the most sensitive models. Tumor growth inhibition is also observed in tumor models with EGFR mutations, including activating mutations and those with the exon 2-7 deletion [EGFR variant III (EGFRvIII)], commonly found in glioblastoma multiforme. ABT-414 exhibits potent cytotoxicity against glioblastoma multiforme patient-derived xenograft models expressing either wild-type EGFR or EGFRvIII, with sustained regressions and cures observed at clinically relevant doses. ABT-414 also combines with standard-of-care treatment of radiation and temozolomide, providing significant therapeutic benefit in a glioblastoma multiforme xenograft model. On the basis of these results, ABT-414 has advanced to phase I/II clinical trials, and objective responses have been observed in patients with both amplified wild-type and EGFRvIII-expressing tumors. Mol Cancer Ther; 15(4); 661-9. ©2016 AACR. Mol Cancer Ther 2016 Apr; 15(4): 661-
    corecore