178 research outputs found

    Magnetization Process of High Anisotropy Copt Nanosized Dots

    Get PDF
    The magnetization reversal process of the CoPt dot was investigated in this paper. It was observed that the magnetization reversal of the dot was initiated by the rotation process of a nucleus with the volume of (17 nm)/sup 3/

    Switching field and thermal stability of CoPt/Ru dot arrays with various thicknesses

    Get PDF
    The switching fields and thermal stability of CoPt/Ru dot arrays with various dot thickness delta (5-20 nm) were experimentally investigated as a function of the dot diameter, D, (130-300 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to the remanence coercivity Hr. The angular dependence of Hr for the dot arrays indicated coherent rotation of the magnetization during nucleation. We estimated the values of the "intrinsic" remanence coercivity H0 obtained by subtracting the effect of thermal agitation on the magnetization and the stabilizing energy barrier to nucleation E0/(kBT). The variation in H0 as a function of delta and D was qualitatively in good agreement with that of the effective anisotropy field at the dot center Hk eff(r=0), calculated taking account of the demagnetizing field in the dots. The ratio of H 0 to Hk eff(r=0) for the dot arrays with delta=10 nm increased from 0.53 to 0.70 as D decreased from 300 to 140 nm, and no significant difference in the H0/Hk eff(r=0) ratio due to the difference in delta was observed. On the other hand, E0/(k BT) decreased as delta decreased. E0/(kBT) increased slightly as D decreased, but, was not so sensitive to D over the present D rang

    Quantum Transport with Spin Dephasing: A Nonequilibrium Green's Function Approach

    Full text link
    A quantum transport model incorporating spin scattering processes is presented using the non-equilibrium Green's function (NEGF) formalism within the self-consistent Born approximation. This model offers a unified approach by capturing the spin-flip scattering and the quantum effects simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction devices with embedded magnetic impurity layers. The results are compared with experimental data, revealing the underlying physics of the coherent and incoherent transport regimes. It is shown that small variations in magnetic impurity spin-states/concentrations could cause large deviations in junction magnetoresistances.Comment: NEGF Formalism, Spin Dephasing, Magnetic Tunnel Junctions, Magnetoresistanc

    Inhibition of motility and invasiveness of renal cell carcinoma induced by short interfering RNA transfection of β1,4GalNAc transferase

    Get PDF
    AbstractHuman renal cell carcinoma (RCC) has been characterized by remarkable changes in ganglioside composition. TOS1 cells, typical of metastatic RCC, are characterized by predominance of GM2 as monosialoganglioside, and β1,4GalNAc disialyl-Lc4 (RM2 antigen) as disialoganglioside [J. Biol. Chem. 276 (2001) 16695]. In order to observe the functional role of gangliosides in RCC malignancy, TOS1 cells were transfected with short interfering RNA (siRNA) based on open reading frame sequence of β1,4GalNAc transferase (β1,4GalNAc-T), and its disordered sequence of siRNA (dsiRNA) as control. In siRNA transfectant, β1,4GalNAc-T mRNA level and GM2 expression were greatly reduced, whereby GM3 expression appeared. In contrast, RM2 antigen level was unchanged, even though it has the same β1,4GalNAc epitope at the terminus. dsiRNA transfectant showed no change of β1,4GalNAc-T mRNA and did not express GM3. Concomitant with reduction of GM2 and appearance of GM3, siRNA transfectant showed greatly reduced motility and invasiveness, although growth rate was unaltered. Both transfectants with siRNA and dsiRNA expressed the same level of tetraspanin CD9. Since CD9/GM3 complex is known to reduce integrin-dependent motility and invasiveness [Biochemistry 40 (2001) 6414], it is plausible that motility and invasiveness of siRNA transfectant of TOS1 cells may be reduced by enhanced formation of such complex

    Measurement of the dynamical dipolar coupling in a pair of magnetic nano-disks using a Ferromagnetic Resonance Force Microscope

    Get PDF
    International audienceWe perform an extensive experimental spectroscopic study of the collective spin-wave dynamics occurring in a pair of magnetic nano-disks coupled by the magneto-dipolar interaction. For this, we take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance force microscope (f-MRFM) to continuously tune and detune the relative resonance frequencies between two adjacent nano-objects. This reveals the anti-crossing and hybridization of the spin-wave modes in the pair of disks. At the exact tuning, the measured frequency splitting between the binding and anti-binding modes precisely corresponds to the strength of the dynamical dipolar coupling Ω\Omega. This accurate f-MRFM determination of Ω\Omega is measured as a function of the separation between the nano-disks. It agrees quantitatively with calculations of the expected dynamical magneto-dipolar interaction in our sample
    corecore