34 research outputs found

    日本におけるマツノザイセンチュウの病原力と遺伝的多様性およびヤクタネゴヨウの保全に関する研究

    Get PDF
    学位の種別: 論文博士審査委員会委員 : (主査)東京大学教授 富樫 一巳, 東京大学教授 福田 健二, 東京大学准教授 久保田 耕平, 東京大学准教授 松下 範久, 東京大学准教授 練 春蘭University of Tokyo(東京大学

    Diversity, migration routes, and worldwide population genetic structure of Lecanosticta acicola, the causal agent of brown spot needle blight

    Get PDF
    Lecanosticta acicola is a pine needle pathogen causing brown spot needle blight that results in premature needle shedding with considerable damage described in North America, Europe, and Asia. Microsatellite and mating type markers were used to study the population genetics, migration history, and reproduction mode of the pathogen, based on a collection of 650 isolates from 27 countries and 26 hosts across the range of L. acicola. The presence of L. acicola in Georgia was confirmed in this study. Migration analyses indicate there have been several introduction events from North America into Europe. However, some of the source populations still appear to remain unknown. The populations in Croatia and western Asia appear to originate from genetically similar populations in North America. Intercontinental movement of the pathogen was reflected in an identical haplotype occurring on two continents, in North America (Canada) and Europe (Germany). Several shared haplotypes between European populations further suggests more local pathogen movement between countries. Moreover, migration analyses indicate that the populations in northern Europe originate from more established populations in central Europe. Overall, the highest genetic diversity was observed in south-eastern USA. In Europe, the highest diversity was observed in France, where the presence of both known pathogen lineages was recorded. Less than half of the observed populations contained mating types in equal proportions. Although there is evidence of some sexual reproduction taking place, the pathogen spreads predominantly asexually and through anthropogenic activity

    Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan.

    No full text
    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands

    A novel approach of preventing Japanese cedar pollen dispersal that is the cause of Japanese cedar pollinosis (JCP) using pollen-specific fungal infection.

    Get PDF
    In Japan, Japanese cedar pollen dispersal is one of the major causes of pollinosis. Sydowia japonica is an ascomycetous fungus that grows exclusively on the male strobili of Japanese cedar, suggesting a possible mechanism for controlling pollen dispersal. To evaluate this possibility, eleven isolates of S. japonica were collected from around Japan and used as an inoculum to male strobili of Japanese cedar. The treatment demonstrated that the fungus infected only the pollen and prevented pollen dispersal. The fungus did not cause any additional symptoms to other parts of Japanese cedar, such as needles, stems, and buds. All S. japonica isolates collected around Japan could serve to control pollen dispersal. Periodic observation of the fungal pathogenesis with stereomicroscope and scanning electron microscope showed that hyphal fragments and conidia of S. japonica germinated on the surface of male strobili, and the germ tube entered pollen sacs through opening microsporophylls. Within the pollen sacs, the hyphae penetrated pollen gradually, such that all pollen was infected by the fungus by approximately one month before the pollen dispersal season. The infected pollen was destroyed due to the fungal infection and was never released. Our data suggests a novel approach of preventing pollen dispersal using pollen-specific fungal infection

    Şık ama tatsız susam

    Get PDF
    Taha Toros Arşivi, Dosya No: 112-Lokantalarİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033
    corecore