31 research outputs found

    Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS) are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS) and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists.</p> <p>Method</p> <p>Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2) cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs.</p> <p>Results</p> <p>We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of PPAR/Gal4 chimera receptors. Yeast-derived sphingoid base fraction, which contained PHS and DHS, or authentic PHS or DHS increased PPAR-dependent transcription. Additionally, phytoceramide stimulated PPARα activity in HepG2 hepatocytes, suggesting that phytoceramide activates genes regulated by PPARα.</p> <p>Conclusions</p> <p>Phytoceramide and yeast-derived sphingoid bases activate PPARs, whereas ceramide and dihydroceramide do not change the PPAR activity. The present findings suggest that phytoceramide acts as a PPAR ligand that would regulate PPAR-targeted genes.</p

    Studies on Expression of Aldehyde Dehydrogenase in Normal and Cancerous Tissues of Thyroids

    Get PDF
    Recently published articles have reported the controversial data regarding expression of aldehyde dehydrogenase isozyme 1A1 (ALDH1A1), a potential candidate marker for normal and cancer stem cells (CSCs), in thyroid tissues. These data prompted us to re-evaluate expression of ALDH1A1 in normal and cancerous thyroid tissues by 2 different means. The first method was immunohistochemistry with 2 different anti-ALDH1A1 antibodies from distinct companies. Following validating the integrity of these 2 antibodies by Western blotting with ALDH-expressing and nonexpressing cancer cell lines and immunohistochemistry with breast and colon tissues, we report here significant and comparable expression of ALDH1A1 in both normal and cancerous thyroid tissues with both antibodies. Next, relative expression levels of ALDH isozymes were evaluated by reverse transcription-polymerase chain reaction (RT-PCR), revealing that ALDH1A1 was the most highly expressed isozyme followed by ALDH9A1 and relative expression patterns of isozymes were very similar in normal and cancerous tissues. All these data demonstrate that thyroid cells of normal and cancer origins do express ALDH1A1 and to a lesser extent 9A1. Further study will be necessary to study functional significance of ALDH1A1 in the function and behaviors of thyroid normal and cancer stem cells

    Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes

    Get PDF
    Susumu Mitsutake, Kota Zama, Hazuki Yokota, Tetsuya Yoshida, Miki Tanaka, Masaru Mitsui, Masahito Ikawa, Masaru Okabe, Yoshikazu Tanaka, Tadashi Yamashita, Hiroshi Takemoto, Toshiro Okazaki, Ken Watanabe, Yasuyuki Igarashi, Dynamic Modification of Sphingomyelin in Lipid Microdomains Controls Development of Obesity, Fatty Liver, and Type 2 Diabetes, Journal of Biological Chemistry, Volume 286, Issue 32, 2011, Pages 28544-28555, ISSN 0021-9258, https://doi.org/10.1074/jbc.M111.255646

    The interaction between the pleckstrin homology domain of ceramide kinase and phosphatidylinositol 4,5-bisphosphate regulates the plasma membrane targeting and ceramide 1-phosphate levels

    Get PDF
    Ceramide kinase (CERK) converts ceramide (Cer) to ceramide-1-phosphate (C1P), which has recently emerged as a new bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. Although the PH domain was previously demonstrated to be an important domain for the subcellular localization of CERK, the precise properties of this domain remained unclear. In this study, we reveal that the PH domain of CERK exhibits high affinity for phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2)[0], among other lipids. Furthermore, in COS7 cells, GFPfused CERK translocated rapidly from the cytoplasm to the plasma membrane in response to hyper-osmotic stress, which is known to increase the intracellular PI(4,5)P2 levels, whereas a PH-domain deletion mutant did not. Additionally, in [32P]orthophosphate-labeled COS7 cells, the translocation of CERK to the plasma membrane induced a 2.8 fold increase in C1P levels. The study presented here provides insight into the crucial role of the CERK[0]-PH domain in plasma membrane targeting, through its binding to PI(4,5)P2, and subsequent induction of C1P production in the vicinity of the membran

    4,8-Sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ingestion of glucosylceramide improves transepidermal water loss (TEWL) from the skin, but the underlying mechanism by which a small amount of dietary glucosylceramide can vastly improve skin conditions remains unclear. In a previous report, glucosylceramides were shown to be digested to sphingoids, which were shown to be absorbed through the intestinal epithelium. Based on these observations, we hypothesized that sphingoids are the key molecules facilitating endogenous ceramide production. In this study, we assessed the effect of 4,8-sphingadienine (d18:2) and 4-hydroxy-8-sphingenine (t18:1), derived from konjac glucosylceramide, on stimulating ceramide production.</p> <p>Methods</p> <p>Konjac glucosylceramide acidolysis was performed using hydrochloric acid; the resulting d18:2 and t18:1 were fractionated by column chromatography. Real-time quantitative RT-PCR was performed to assess the effect of d18:2 and t18:1 on gene expression in normal human epidermal keratinocytes, while their effect on the nuclear receptor, peroxisome proliferator-activated receptor (PPAR)γ, was measured using a receptor-cofactor assay system. The effect of d18:2 and t18:1 on stimulating ceramide production was evaluated using HPTLC analysis in a 3-dimensional human skin model.</p> <p>Results</p> <p>We noted the upregulation of genes related to <it>de novo</it> ceramide synthesis as well as of those encoding the elongases of very long-chain fatty acids by d18:2 and t18:1, but not by glucosylceramide and 4-sphingenine. Both these sphingoids also facilitated the expression of PPARβ/δ and PPARγ; moreover, they also demonstrated ligand activity for PPARγ. These results indicated that d18:2 and t18:1 promote the differentiation of keratinocytes. Analysis of the lipids within the 3-dimensional human skin model indicated that treatment with d18:2 and t18:1 not only upregulated gene expression but also increased ceramide production.</p> <p>Conclusions</p> <p>The sphingoids d18:2 and t18:1 activated genes related to <it>de novo</it> ceramide synthesis and increased ceramide production, whereas glucosylceramide and 4-sphingenine could not. These results suggest that the effect of dietary glucosylceramides on the skin is mediated by d18:2 and t18:1.</p

    Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice

    Get PDF
    Elevated levels of amyloid-β peptide (Aβ) in the human brain are linked to the pathogenesis of Alzheimer disease. Recent in vitro studies have demonstrated that extracellular Aβ can bind to exosomes, which are cell-secreted nanovesicles with lipid membranes that are known to transport their cargos intercellularly. Such findings suggest that the exosomes are involved in Aβ metabolism in brain. Here, we found that neuroblastoma-derived exosomes exogenously injected into mouse brains trapped Aβ and with the associated Aβ were internalized into brain-resident phagocyte microglia. Accordingly, continuous intracerebral administration of the exosomes into amyloid-β precursor protein transgenic mice resulted in marked reductions in Aβ levels, amyloid depositions, and Aβ-mediated synaptotoxicity in the hippocampus. In addition, we determined that glycosphingolipids (GSLs), a group of membrane glycolipids, are highly abundant in the exosomes, and the enriched glycans of the GSLs are essential for Aβ binding and assembly on the exosomes both in vitro and in vivo. Our data demonstrate that intracerebrally administered exosomes can act as potent scavengers for Aβ by carrying it on the exosome surface GSLs and suggest a role of exosomes in Aβ clearance in the central nervous system. Improving Aβ clearance by exosome administration would provide a novel therapeutic intervention for Alzheimer disease

    Suppression of mast cell degranulation by a novel ceramide kinase inhibitor, the F-12509A olefin isomer K1

    Get PDF
    Antigen-induced degranulation of mast cells plays a pivotal role in allergic and inflammatory responses. Recently, ceramide kinase (CERK) and its phosphorylated product ceramide 1-phosphate (C1P) have emerged as important players in mast cell degranulation. Here, we describe the synthesis of a novel F-12509A olefin isomer, K1, as an effective CERK inhibitor. In vitro kinase assays demonstrated that K1 effectively inhibits CERK without inhibiting sphingosine kinase and diacylglycerol kinase. Treating RBL-2H3 cells with K1 reduced cellular C1P levels to 40% yet had no effect on cell growth. Furthermore, treatment with K1 significantly suppressed both calcium ionophore- and IgE/antigen-induced degranulation, indicating that K1 interferes with signals that happen downstream of Ca2+ mobilization. Finally, we show that K1 affects neither IgE/antigen-induced global tyrosine phosphorylation nor subsequent Ca2+ elevation, suggesting a specificity for CERK-mediated signals. Our novel CERK inhibitor provides a useful tool for studying the biological functions of CERK and C1P. Moreover, to our knowledge, this is the first report demonstrating that inhibition of CERK suppresses IgE/antigen-induced mast cell degranulation. This finding suggests that CERK inhibitors might be a potential therapeutic tool in the treatment of allergic diseases
    corecore