182 research outputs found

    Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: Potential applications

    Get PDF
    AbstractThis review describes the preparation of core-corona type polymeric nanoparticles and their applications in various technological and biomedical fields. Over the past two decades, we have studied the synthesis and clinical applications of core-corona polymeric nanoparticles composed of hydrophobic polystyrene and hydrophilic macromonomers. These nanoparticles were utilized as catalyst carriers, carriers for oral peptide delivery, virus capture agents, and vaccine carriers, and so on. Moreover, based on this research, we attempted to develop novel biodegradable nanoparticles composed of hydrophobic poly(γ-glutamic acid) (γ-PGA) derivatives (γ-hPGA). Various model proteins were efficiently entrapped on/into the nanoparticles under different conditions: encapsulation, covalent immobilization, and physical adsorption. The encapsulation method showed the most promising results for protein loading. It is expected that biodegradable γ-hPGA nanoparticles can encapsulate and immobilize various biomacromolecules. Nanoparticles consisting of hydrophobic and hydrophilic segments have great potential as multifunctional carriers for pharmaceutical and biomedical applications, such as drug, protein, peptide or DNA delivery systems

    Uptake of biodegradable poly(γ-glutamic acid) nanoparticles and antigen presentation by dendritic cells in vivo

    Get PDF
    AbstractPoly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) carrying antigens have been shown to induce potent antigen-specific immune responses. However, in vivo delivery of γ-PGA NPs to dendritic cells (DCs), a key regulator of immune responses, still remains unclear. In this study, γ-PGA NPs were examined for their uptake by DCs and subsequent migration from the skin to the regional lymph nodes (LNs) in mice. After subcutaneous injection of fluorescein 5-isothiocyanate (FITC)-labeled NPs or FITC-ovalbumin (OVA)-carrying NPs (FITC-OVA-NPs), DCs migrated from the skin to the LNs and maturated, resulting in the upregulation of the costimulatory molecules CD80 and CD86 and the chemokine receptor CCR7. However, the migrated DCs were not detected in the spleen. FITC-OVA-NPs were found to be taken up by skin-derived CD103+ DCs, and the processed antigen peptides were cross-presented by the major histocompatibility complex (MHC) class I molecule of DCs. Furthermore, significant activation of antigen-specific CD8+ T cells was observed in mice immunized with OVA-carrying NPs (OVA-NPs) but not with OVA alone or OVA with an aluminum adjuvant. The antigen-specific CD8+ T cells were induced within 7 days after immunization with OVA-NPs. Thus, γ-PGA NPs carrying various antigens may have great potential as an antigen-delivery system and vaccine adjuvant in vivo
    corecore