466 research outputs found

    Heavy-Electron Formation and Bipolaronic Transition in the Anharmonic Holstein Model

    Full text link
    The emergence of the bipolaronic phase and the formation of the heavy-electron state in the anharmonic Holstein model are investigated using the dynamical mean-field theory in combination with the exact diagonalization method. For a weak anharmonicity, it is confirmed that the first-order polaron-bipolaron transition occurs from the observation of a discontinuity in the behavior of several physical quantities. When the anharmonicity is gradually increased, the polaron-bipolaron transition temperature is reduced as well as the critical values of the electron-phonon coupling constant for polaron-bipolaron transition. For a strong anharmonicity, the polaron-bipolaron transition eventually changes to a crossover behavior. The effect of anharmonicity on the formation of the heavy-electron state near the polaron-bipolaron transition and the crossover region is discussed in detail.Comment: 11 pages, 13 figure

    Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity

    Full text link
    We investigate how Kondo phenomenon occurs in the Anderson model dynamically coupled with local Jahn-Teller phonons. It is found that the total angular moment composed of electron pseudo-spin and phonon angular moments is screened by conduction electrons. Namely, phonon degrees of freedom essentially contribute to the formation of singlet ground state. A characteristic temperature of the Kondo effect due to dynamical Jahn-Teller phonons is explained by an effective ss-dd Hamiltonian with anisotropic exchange interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic region.Comment: 5 pages, 3 figure

    Local Heavy Quasiparticle in Four-Level Kondo Model

    Full text link
    An impurity four-level Kondo model, in which an ion is tunneling among 4-stable points and interacting with surrounding conduction electrons, is investigated using both perturbative and numerical renormalization group methods. The results of numerical renormalization group studies show that it is possible to construct the ground state wavefunction including the excited ion states if we take into account the interaction between the conduction electrons and the ion. The resultant effective mass of quasiparticles is moderately enhanced. This result offers a good explanation for the enhanced and magnetically robust Sommerfeld coefficient observed in SmOs4_4Sb12_{12}, some other filled-skutterudites, and clathrate compounds.Comment: 9 pages, 7 figures. Added references and "Note added

    The hydrogen and helium lines of the symbiotic binary Z And during its brightening at the end of 2002

    Full text link
    High resolution observations in the region of the lines Halpha, He II 4686 and Hgamma of the spectrum of the symbiotic binary Z And were performed during its small-amplitude brightening at the end of 2002. The profiles of the hydrogen lines were double-peaked. These profiles give a reason to suppose that the lines can be emitted mainly by an optically thin accretion disc. The Halpha line is strongly contaminated by the emission of the envelope, therefore for consideration of accretion disc properties we use the Hgamma line. The Halpha line had broad wings which are supposed to be determined mostly from radiation damping but high velocity stellar wind from the compact object in the system can also contribute to their appearance. The Hgamma line had a broad emission component which is assumed to be emitted mainly from the inner part of the accretion disc. The line He II 4686 had a broad emission component too, but it is supposed to appear in a region of a high velocity stellar wind. The outer radius of the accretion disc can be calculated from the shift between the peaks. Assuming, that the orbit inclination can ranges from 47∘^\circ to 76∘^\circ, we estimate the outer radius as 20 - 50 R_sun. The behaviour of the observed lines can be considered in the framework of the model proposed for interpretation of the line spectrum during the major 2000 - 2002 brightening of this binary.Comment: 19 pages, 5 figures. Accepted for publication in Astronomy Report

    First Order Bipolaronic Transition at Finite Temperature in the Holstein Model

    Full text link
    We investigate the Holstein model by using the dynamical mean-field theory combined with the exact diagonalization method. Below a critical temperature Tcr, a coexistence of the polaronic and the bipolaronic solutions is found for the same value of the electron-phonon coupling $ in the range gc1(T)<g<gc2(T). In the coexistence region, the system shows a first order phase transition from the bipolaronic to the polaronic states as T decreases at T=Tp(<Tcr), where the double occupancy and the lattice fluctuation together with the anharmonicity of the effective ion potential change discontinuously without any symmetry breaking. The obtained bipolaronic transition seems to be consistent with the rattling transition in the beta-pyrochlore oxide KOs2O6.Comment: 5 pages, 5 figures, J. Phys. Soc. Jpn. 79 (2010) 09370

    Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon

    Full text link
    We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction UeeU_{\rm ee} and phonon-mediated attraction UphU_{\rm ph}. For Uee>UphU_{\rm ee}>U_{\rm ph}, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as Uee−UphU_{\rm ee}-U_{\rm ph}, the Kondo temperature TKT_{\rm K} is increased when UphU_{\rm ph} is increased. On the other hand, for Uee<UphU_{\rm ee}<U_{\rm ph}, there occurs the Kondo effect concerning charge degree of freedom, since vacant and double occupied states play roles of pseudo-spins. Note that in this case, TKT_{\rm K} is decreased with the increase of UphU_{\rm ph}. Namely, TKT_{\rm K} should be maximized for Uee≈UphU_{\rm ee} \approx U_{\rm ph}. Then, we analyze in detail the Kondo behavior at Uee=UphU_{\rm ee}=U_{\rm ph}, which is found to be explained by the polaron Anderson model with reduced hybridization of polaron and residual repulsive interaction among polarons. By comparing the NRG results of the polaron Anderson model with those of the original Anderson-Holstein model, we clarify the Kondo behavior in the competing region of Uee≈UphU_{\rm ee} \approx U_{\rm ph}.Comment: 8 pages, 8 figure

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis

    Strong-Coupling Theory of Rattling-Induced Superconductivity

    Full text link
    In order to clarify the mechanism of the enhancement of superconducting transition temperature TcT_{\rm c} due to anharmonic local oscillation of a guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From the evaluation of the normal-state electron-phonon coupling constant, it is found that the strong coupling state is developed, when the bottom of a potential for the guest ion becomes wide and flat. Then, TcT_{\rm c} is enhanced with the increase of the anharmonicity in the potential, although TcT_{\rm c} is rather decreased when the potential becomes a double-well type due to very strong anharmonicity. From these results, we propose a scenario of anharmonicity-controlled strong-coupling tendency for superconductivity induced by rattling. We briefly discuss possible relevance of the present scenario with superconductivity in β\beta-pyrochlore oxides.Comment: 8 pages, 6 figure

    Step-Wise Computational Synthesis of Fullerene C60 derivatives. 1.Fluorinated Fullerenes C60F2k

    Full text link
    The reactions of fullerene C60 with atomic fluorine have been studied by unrestricted broken spin-symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on AM1 technique. The calculations were focused on a sequential addition of fluorine atom to the fullerene cage following indication of the cage atom highest chemical susceptibility that is calculated at each step. The effectively-non-paired-electron concept of the fullerene atoms chemical susceptibility lays the foundation of the suggested computational synthesis. The obtained results are analyzed from energetic, symmetry, and the composition abundance viewpoints. A good fitting of the data to experimental findings proves a creative role of the suggested synthesis methodology.Comment: 33 pages, 11 figures, 2 tables, 2 chart

    Symptoms and quality of life in late stage Parkinson syndromes: a longitudinal community study of predictive factors

    Get PDF
    BACKGROUND Palliative care is increasingly offered earlier in the cancer trajectory but rarely in Idiopathic Parkinson's Disease(IPD), Progressive Supranuclear Palsy(PSP) or Multiple System Atrophy(MSA). There is little longitudinal data of people with late stage disease to understand levels of need. We aimed to determine how symptoms and quality of life of these patients change over time; and what demographic and clinical factors predicted changes. METHODS We recruited 82 patients into a longitudinal study, consenting patients with a diagnosis of IPD, MSA or PSP, stages 3-5 Hoehn and Yahr(H&Y). At baseline and then on up to 3 occasions over one year, we collected self-reported demographic, clinical, symptom, palliative and quality of life data, using Parkinson's specific and generic validated scales, including the Palliative care Outcome Scale (POS). We tested for predictors using multivariable analysis, adjusting for confounders. FINDINGS Over two thirds of patients had severe disability, over one third being wheelchair-bound/bedridden. Symptoms were highly prevalent in all conditions - mean (SD) of 10.6(4.0) symptoms. More than 50% of the MSA and PSP patients died over the year. Over the year, half of the patients showed either an upward (worsening, 24/60) or fluctuant (8/60) trajectory for POS and symptoms. The strongest predictors of higher levels of symptoms at the end of follow-up were initial scores on POS (AOR 1.30; 95%CI:1.05-1.60) and being male (AOR 5.18; 95% CI 1.17 to 22.92), both were more predictive than initial H&Y scores. INTERPRETATION The findings point to profound and complex mix of non-motor and motor symptoms in patients with late stage IPD, MSA and PSP. Symptoms are not resolved and half of the patients deteriorate. Palliative problems are predictive of future symptoms, suggesting that an early palliative assessment might help screen for those in need of earlier intervention
    • …
    corecore