43 research outputs found

    Evolutionary ecology of masting: mechanisms, models, and climate change.

    Get PDF
    Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question

    Effects of forest fragmentation on the mating system of a cool-temperate heterodichogamous tree Acer mono

    Get PDF
    Pollination is a key process for reproduction and gene flow in flowering plants. Anthropogenic habitat fragmentation, however, can disrupt plant–pollinator interactions, and may have a negative impact on the reproductive success and population viability of entomophilous plants. Heterodichogamous plants containing protandrous and protogynous individuals within a population may be susceptible to habitat fragmentation due to a lack of available mating partners. In this study, we investigated the effects of forest fragmentation on the mating system in the heterodichogamous plant Acer mono, a major constituent of cool-temperate deciduous forests in Japan. Microsatellite analysis was applied to 212 adult trees and 17 seed families from continuous and fragmented forests. Dispersal kernel modeling using the neighborhood model indicated that pollen dispersal of A. mono was highly fat-tailed. The estimated parameters of the model suggested that the siring success of a pollen donor increased approximately fivefold, with a 100 cm increase in its diameter at breast height (DBH), and that disassortative mating was five times more frequent than assortative mating. The mating system parameters of each mother tree, outcrossing rate (tm), biparental inbreeding (tm−ts), and paternity correlation (rpm) varied among sites and conditions, depending on the local density of potential pollen donors. Whereas A. mono was effectively outcrossed (tm=0.901, tm−ts=0.052, and the number of effective sires was 1/rpm=14.93) in the continuous forest, clumped trees within the fragmented forest showed increased biparental inbreeding and reduced pollen pool genetic diversity (tm=0.959, tm−ts=0.245,1/rpm=1.742) as a result of localized mating combined with spatial genetic structures. In contrast, the isolated trees had a higher selfing rate, but the pollen pool diversity was maintained (tm=0.801, tm−ts=0.022, and 1/rpm=15.63) due to frequent long-distance pollination. These results suggest that although pollen limitation following habitat fragmentation could result in negative genetic consequences, enhanced long-distance pollination across a fragmented landscape could partly compensate for this limitation depending on the degree of forest fragmentation

    Effects of Seed Size and Chemical Variation on Seed Fates in a Deciduous Oak Species Quercus serrata

    No full text

    Increased Conversion of Tryptophan to Nicotinamide in Rats by Dietary Valproate

    No full text
    corecore