123 research outputs found

    Giant Carrier Mobility in Single Crystals of FeSb2

    Full text link
    We report the giant carrier mobility in single crystals of FeSb2. Nonlinear field dependence of Hall resistivity is well described with the two-carrier model. Maximum mobility values in high mobility band reach ~10^5 cm^2/Vs at 8 K, and are ~10^2 cm^2/Vs at the room temperature. Our results point to a class of materials with promising potential for applications in solid state electronics.Comment: 5 pages, 3 figures. Applied Physics Letters (in press

    Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2

    Full text link
    We have investigated anisotropy in magnetic and electrical transport properties of Fe1-xCrxSb2 (0<= x <=1) single crystals. The magnetic ground state of the system evolves from paramagnetic to antiferromagnetic with gradual substitution of Fe with Cr. Anisotropy in electrical transport diminishes with increased Cr substitution and fades away by x=0.5. We find that the variable range hopping (VRH) conduction mechanism dominates at low temperatures for 0.4<= x <=0.75.Comment: 5 pages, 6 figure

    Anisotropy in magnetic and transport properties of Fe1-xCoxSb2

    Full text link
    Anisotropic magnetic and electronic transport measurements were carried out on large single crystals of Fe1-xCoxSb2 (0<= x <=1). The semiconducting state of FeSb2 evolves into metallic and weakly ferromagnetic by substitution of Fe with Co for x<0.5. Further doping induces structural transformation from orthorhombic Pnnm structure of FeSb2 to monoclinic P21/c structure of CoSb2 where semiconducting and diamagnetic ground state is restored again. Large magnetoresistance and anisotropy in electronic transport were observed.Comment: 7 pages, 6 figure

    Comment on ``Texture in the Superconducting Order Parameter of CeCoIn5_5 Revealed by Nuclear Magnetic Resonance''

    Full text link
    The study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been of considerable recent interest. Below the temperature T∗T^* which is believed to be the transition temperature (TT) to the FFLO phase in CeCoIn5_5, K. Kakuyanagi et al. (Phys. Rev. Lett. 94, 047602 (2005)) reported a composite NMR spectrum with a tiny component observed at frequencies corresponding to the normal state signal. The results were interpreted as evidence for the emergence of an FFLO state. This result is inconsistent with two other NMR studies of V. F. Mitrovi{\'c} et al. (Phys. Rev. Lett. 97, 117002 (2006)) and B.-L. Young et al. (Phys. Rev. Lett. 98, 036402 (2007)). In this comment we show that the findings of K. Kakuyanagi et al. do not reflect the true nature of the FFLO state but result from excess RF excitation power used in that experiment.Comment: 1 page, to appear in PR

    Optical investigation of the metal-insulator transition in FeSb2

    Get PDF
    Abstract.: We present a comprehensive optical study of the narrow gap FeSb2 semiconductor. From the optical reflectivity, measured from the far infrared up to the ultraviolet spectral range, we extract the complete absorption spectrum, represented by the real part σ1(ω) of the complex optical conductivity. With decreasing temperature below 80K, we find a progressive depletion of σ1(ω) below Eg∼300 cm-1, the semiconducting optical gap. The suppressed (Drude) spectral weight within the gap is transferred at energies ω>Eg and also partially piles up over a continuum of excitations extending in the spectral range between zero and Eg. Moreover, the interaction of one phonon mode with this continuum leads to an asymmetric phonon shape. Even though several analogies between FeSb2 and FeSi were claimed and a Kondo-insulator scenario was also invoked for both systems, our data on FeSb2 differ in several aspects from those of FeSi. The relevance of our findings with respect to the Kondo insulator description will be addresse

    Properties of the superconducting state in a two-band model

    Full text link
    Eliashberg theory is used to investigate the range of thermodynamic properties possible within a two-band model for s-wave superconductivity and to identify signatures of its two-band nature. We emphasize dimensionless BCS ratios (those for the energy gaps, the specific heat jump and the negative of its slope near Tc, the thermodynamic critical field Hc(0), and the normalized slopes of the critical field and the penetration depth near Tc), which are no longer universal even in weak coupling. We also give results for temperature-dependent quantities, such as the penetration depth and the energy gap. Results are presented both for microscopic parameters appropriate to MgB2 and for variations away from these. Strong coupling corrections are identified and found to be significant. Analytic formulas are provided which show the role played by the anisotropy in coupling in some special limits. Particular emphasis is placed on small interband coupling and on the opposite limit of no diagonal coupling. The effect of impurity scattering is considered, particularly for the interband case.Comment: 20 pages, 14 figures, final version accepted in PR
    • …
    corecore