13 research outputs found

    Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells.

    Get PDF
    Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm2. The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair

    Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver

    Get PDF
    The classical drug development pipeline necessitates studies using animal models of human disease to gauge future efficacy in humans, however there is a low conversion rate from success in animals to humans. Non-alcoholic fatty liver disease (NAFLD) is a complex chronic disease without any established therapies and a major field of animal research. We performed a meta-analysis with meta-regression of 603 interventional rodent studies (10,364 animals) in NAFLD to assess which variables influenced treatment response. Weight loss and alleviation of insulin resistance were consistently associated with improvement in NAFLD. Multiple drug classes that do not affect weight in humans caused weight loss in animals. Other study design variables, such as age of animals and dietary composition, influenced the magnitude of treatment effect. Publication bias may have increased effect estimates by 37-79%. These findings help to explain the challenge of reproducibility and translation within the field of metabolism

    Bone Morphogenetic Protein 9 Enhances Lipopolysaccharide-Induced Leukocyte Recruitment to the Vascular Endothelium.

    No full text
    Bone morphogenetic protein (BMP)9 is a circulating growth factor that is part of the TGF-β superfamily and is an essential regulator of vascular endothelial homeostasis. Previous studies have suggested a role for BMP9 signaling in leukocyte recruitment to the endothelium, but the directionality of this effect and underlying mechanisms have not been elucidated. In this study, we report that BMP9 upregulates TLR4 expression in human endothelial cells and that BMP9 pretreatment synergistically increases human neutrophil recruitment to LPS-stimulated human endothelial monolayers in an in vitro flow adhesion assay. BMP9 alone did not induce neutrophil recruitment to the endothelium. We also show that E-selectin and VCAM-1, but not ICAM-1, are upregulated in response to BMP9 in LPS-stimulated human endothelial cells. Small interfering RNA knockdown of activin receptor-like kinase 1 inhibited the BMP9-induced expression of TLR4 and VCAM-1 and inhibited BMP9-induced human neutrophil recruitment to LPS-stimulated human endothelial cells. BMP9 treatment also increased leukocyte recruitment within the pulmonary circulation in a mouse acute endotoxemia model. These results demonstrate that although BMP9 alone does not influence leukocyte recruitment, it primes the vascular endothelium to mount a more intense response when challenged with LPS through an increase in TLR4, E-selectin, and VCAM-1 and ultimately through enhanced leukocyte recruitment.This work was supported by funding from the British Heart Foundation, the Papworth Hospital Research and Development Department, and by the National Institute for Health Research Cambridge Biomedical Research Centre. C.-G.M. holds a Wellcome Trust Ph.D. fellowship in metabolic and cardiovascular disease. K.H. was a British Lung Foundation graduate student, and K.L. holds a Wellcome Trust clinical training fellowship
    corecore