938 research outputs found

    Validity of the linear viscoelastic model for a polymer cylinder with ultrasonic hysteresis-type absorption in a nonviscous fluid

    Full text link
    A necessary condition for the validity of the linear viscoelastic model for a (passive) polymeric cylinder with an ultrasonic hysteresis-type absorption submerged in a non-viscous fluid requires that the absorption efficiency is positive (Qabs > 0) satisfying the law of the conservation of energy. This condition imposes restrictions on the values attributed to the normalized absorption coefficients for the compressional and shear-wave wavenumbers for each partial-wave mode n. The forbidden values produce negative axial radiation force, absorption and extinction efficiencies, as well as an enhancement of the scattering efficiency, not in agreement with the conservation of energy law. Numerical results for the radiation force, extinction, absorption and scattering efficiencies are performed for three viscoelastic (VE) polymer cylinders immersed in a non-viscous host liquid (i.e. water) with particular emphasis on the shear-wave absorption coefficient of the cylinder, the dimensionless size parameter and the partial-wave mode number n. Mathematical constraints are established for the non-dimensional absorption coefficients of the longitudinal and shear waves for a cylinder (i.e. 2D case) and a sphere (i.e. 3D case) in terms of the sound velocities in the VE material. The analysis suggests that the domain of validity for any viscoelastic model describing acoustic attenuation inside a lossy cylinder (or sphere) in a non-viscous fluid must be verified based upon the optical theorem

    Penerapan Strategi Pembelajaran Rotating Trio Exchange (Rte) Untuk Meningkatkan Hasil Belajar Fisika Siswa Kelas XI SMA N 14 Pekanbaru

    Full text link
    Abstrack: This research aimed to describe students' physics learning achievement who learned with Rotating Trio Exchange (RTE) and to determine the significant influence in the sudents' physics learning achievement among Rotating Trio Exchange (RTE) group with conventional learning group at SMA N 14 Pekanbaru . Type of this research is a quasi-experimental, with Intact Group Comparisson design. The sample of this research is students of XI IPA 4 that is applying Rotating Trio Exchange (RTE) and students of XI IPA 1 that is with conventional learning. The data in this research is a score posttest of physics learning achievement and analysis with descriptive and inferensial analysis. There are significant differences between the outcomes of students in the class by applying Rotating Trio Exchange (RTE) with the class that implements conventional learning. The analysis of data showed absortion of student in the class by applying Rotating Trio Exchange (RTE) is higher than the class that implements conventional learning. The absorption and learning effectiveness in class experiment is 84,85 with good and effective categori.With thus be concluded that the application of Rotating Trio Exchange (RTE) can increasing students' physics learning achievement at class XI IPA SMA N 14 Pekanbaru in effort and energy topic

    The development of an object-oriented classification model for operational burned area mapping on the Mediterranean island of Thasos using Landsat TM images

    Get PDF
    ABSTRACT: Multispectral classification, one of the most commonly used methods for mapping burned areas, is based on the spectral properties of different classes of interest and employs special algorithms designed to perform various types of spectral analysis. However, the use of these classifications has been repeatedly reported to create confusion between burned areas and nonvegetation categories, especially water bodies and shaded areas. As a result of the aforementioned, spectral based classification methods cannot be used operationally for the mapping of burned areas from satellite images. On the other hand, object-oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values, shape and texture. Sophisticated classification, incorporating contextual and semantic information, can be performed by utilizing not only image object attributes but also the relationship between networked image objects. In this study the synergy of all these features allowed us to address image analysis tasks that, up till now, have not been possible. The aim of this work was to develop an object-oriented classification model for operational burned area mapping on the Mediterranean island of Thasos using LANDSAT TM images. An objectoriented specified model was used to map burned areas in two different Mediterranean areas after the LANDSAT TM images had been radiometrically, geometrically and topographically corrected. The combination of the object-oriented approach and the multispectral resolution data of LANDSAT TM showed very promising results in burned area mapping and in discriminating between burned and the other classes of confusion

    The DArk Matter Particle Explorer mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to 10\sim 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy

    Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data

    Full text link
    The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon-tungsten tracker-converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron-positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m2^2. Silicon planes are interleaved with three layers of tungsten plates, resulting in about one radiation length of material in the tracker. Internal alignment parameters of the tracker have been determined on orbit, with non-showering protons and helium nuclei. We describe the alignment procedure and present the position resolution and alignment stability measurements

    Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

    Full text link
    High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to 2\sim 2 TeV in previous balloon- or space-borne experiments, and indirectly up to 5\sim 5 TeV by ground-based Cherenkov γ\gamma-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 GeV4.6 TeV25~{\rm GeV}-4.6~{\rm TeV} by the DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The majority of the spectrum can be properly fitted by a smoothly broken power-law model rather than a single power-law model. The direct detection of a spectral break at E0.9E \sim0.9 TeV confirms the evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at energies above 1 TeV and sheds light on the physical origin of the sub-TeV CREs.Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature2447

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ

    The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    Get PDF
    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is γ=2.64±0.01\gamma = -2.64 \pm 0.01. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.Comment: 18 pages, 8 figures, preprint submitted to Phys. Rev.
    corecore