54 research outputs found

    Differential Display Analysis of the Early Compatible Interaction Between Soybean and the Soybean Cyst Nematode

    Get PDF
    The marked cellular changes during feeding site formation of the soybean cyst nematode (Heterodera glycines) indicate major changes in soybean gene expression. We used differential display of mRNA to detect host gene expression changes during the early compatible interaction between soybean and H. glycines. Fifteen cDNA clones corresponding to mRNAs with different abundances in H. glycines-infected versus uninfected roots were identified. Differential display results indicated that abundances of five mRNAs increased in infected roots, whereas abundances of 10 mRNAs decreased. Transcripts for nine of these 15 cDNAs could be detected on RNA blots, and their hybridization signals confirmed the differential display results for eight of these nine cDNAs. Sequence analyses identified five cDNAs with decreased mRNA levels in infected roots as corresponding to two putative aldolase genes, a transcription-factor TFIIA homologue, the soybean small GTP-binding protein gene sra1, and the soybean auxin down-regulated gene ADR12. RNA blot analyses of other auxin down-regulated genes revealed a decrease in their mRNA abundances in H. glycines-infected roots as well

    Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels

    Get PDF
    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review

    Expression of an Arabidopsis phosphoglycerate mutase homologue is localized to apical meristems, regulated by hormones, and induced by sedentary plant-parasitic nematodes

    Get PDF
    We previously isolated a partial soybean cDNA clone whose transcript abundance is increased upon infection by the sedentary, endoparasitic soybean cyst nematode Heterodera glycines. We now isolated the corresponding full-length cDNA and determined that the predicted gene product was similar to the group of cofactor-dependent phosphoglycerate mutase/bisphosphoglycerate mutase enzymes (PGM/bPGM; EC 5.4.2.1/5.4.2.4). We designated the corresponding soybean gene GmPGM. PGM and bPGM are key catalysts of glycolysis that have been well characterized in animals but not plants. Using the GmPGM cDNA sequence, we identified a homologous Arabidopsis thaliana gene, which we designatedAtPGM. Histochemical GUS analyses of transgenic Arabidopsis plants containing theAtPGMpromoter::GUS construct revealed that the AtPGM promoter directs GUS expression in uninfected plants only to the shoot and root apical meristems. In infected plants, GUS staining also is evident in the nematode feeding structures induced by the cyst nematode Heterodera schachtii and by the root-knot nematode Meloidogyne incognita. Furthermore, we discovered that the AtPGM promoter was down-regulated by abscisic acid and hydroxyurea, whereas it was induced by sucrose, oryzalin, and auxin, thereby revealing expression characteristics typical of genes with roles in meristematic cells. Assessment of the auxin-inducible AUX1 gene promoter (a gene coding for a polar auxin transport protein) similarly revealed feeding cell and meristem expression, suggesting that auxin may be responsible for the observed tissue specificity of the AtPGM promoter. These results provide first insight into the possible roles of PGM/bPGM in plant physiology and in plant-pathogen interactions

    Identification and Characterization of a Soybean Ethylene-Responsive Element-Binding Protein Gene Whose mRNA Expression Changes During Soybean Cyst Nematode Infection

    Get PDF
    Ethylene-responsive element-binding proteins (EREBPs) are members of a family of plant transcription factors. Conserved EREBP domains of these proteins bind to the GCC box, an ethylene-responsive promoter element found in many pathogenesis-related (PR) genes. Using degenerate primers to the EREBP domain from diverse plant species, an EREBPhomolog was isolated from a soybean cDNA library. Gel mobility-shift assays revealed that the translation product of this cDNA bound specifically to GCC box sequences. We, therefore, named this gene Glycine max ethylene-responsive element-binding protein 1 (GmEREBP1), i.e., a gene coding for the first confirmed GCC box-binding protein of soybean. GmEREBP1 mRNA abundance was analyzed by RNA blot hybridizations in soybean roots and shoots of cultivars Corsoy 79 and Hartwig, which are susceptible and resistant, respectively, to the soybean cyst nematode (Heterodera glycines). These analyses revealed that GmEREBP1 is expressed in a root-preferential manner and that GmEREBP1 mRNA abundance is changed after H. glycines infection. GmEREBP1 mRNA abundance decreased in infected (susceptible) ‘Corsoy 79’ roots, whereas it increased in abundance in infected (resistant) ‘Hartwig’ roots. Furthermore, ethephon treatment repressed GmEREBP1 mRNA accumulation in both cultivars, whereas wounding increased expression in both cultivars. These changes in mRNA steady-state levels suggest that GmEREBP1 plays a role in soybean-H. glycines interactions

    GmEREBP1 Is a Transcription Factor Activating Defense Genes in Soybean and Arabidopsis

    Get PDF
    Ethylene-responsive element-binding proteins (EREBPs) are plant-specific transcription factors, many of which have been linked to plant defense responses. Conserved EREBP domains bind to the GCC box, a promoter element found in pathogenesis-related (PR) genes. We previously identified an EREBP gene from soybean (GmEREBP1) whose transcript abundance decreased in soybean cyst-nematode-infected roots of a susceptible cultivar, whereas it increased in abundance in infected roots of a resistant cultivar. Here, we report further characterization of this gene. Transient expression analyses showed that GmEREBP1 is localized to the plant nucleus and functions as a transcriptional activator in soybean leaves. Transgenic soybean plants expressing GmEREBP1 activated the expression of the ethylene (ET)-responsive gene PR2 and the ET- and jasmonic acid (JA)-responsive gene PR3, and the salicylic acid (SA)-responsive gene PR1 but not the SA-responsive PR5. Similarly, transgenic Arabidopsis plants expressing GmEREBP1 showed elevated mRNA abundance of the ET-regulated gene PR3 and the ET- and JA-regulated defense-related gene PDF1.2 but not the ET-regulated GST2, and the SA-regulated gene PR1 but not the SA-regulated PR2 and PR5. Transgenic soybean and Arabidopsis plants inoculated with cyst nematodes did not display a significantly altered susceptibility to nematode infection. These results collectively show that GmEREBP1 functions as a transacting inducer of defense gene expression in both soybean and Arabidopsis and mediates the expression of both ET- and JA- and SA-regulated defense-related genes in these plant species

    The methylome of soybean roots during the compatible interaction with the soybean cyst nematode, Heterodera glycines

    Get PDF
    Soybean cyst nematode (SCN, Heterodera glycines) induces the formation of a multinucleated feeding site, or syncytium, whose etiology includes massive gene expression changes. Nevertheless, the genetic networks underlying gene expression control in the syncytium are poorly understood. DNA methylation is a critical epigenetic mark that plays a key role in regulating gene expression. To determine the extent to which DNA methylation is altered in soybean roots during the susceptible interaction with SCN, we generated whole-genome cytosine methylation maps at single nucleotide resolution. The methylome analysis revealed that SCN induces hypo-methylation to a much higher extent than hyper-methylation. We identified 2,465 differentially hyper-methylated regions and 4,692 hypo-methylated regions in the infected roots compared with the non-infected control. In addition, a total number of 703 and 1346 unique genes were identified as overlapping with hyper- or hypo-methylated regions, respectively. The differential methylation in genes apparently occurs independently of gene size and GC content but exhibits strong preference for recently duplicated paralogs. Furthermore, a set of 278 genes was identified as specifically syncytium differentially methylated genes. Of these, we found genes associated with epigenetic regulation, phytohormone signaling, cell wall architecture, signal transduction and ubiquitination. This study provides new evidence that differential methylation is part of the regulatory mechanisms controlling gene expression changes in the nematode-induced syncytium, which seems to be heavily influenced by the traditional well-known transcription factor-based regulatory mechanisms

    Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement

    Get PDF
    High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenousPvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics

    An (E,E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles

    Get PDF
    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-a-farnesene. GmAFS is closely related to (E,E)-a-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticate (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography–mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-a-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively

    Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Get PDF
    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production

    FLP/FRT Recombination from Yeast: Application of a Two Gene Cassette Scheme as an Inducible System in Plants

    Get PDF
    Phytosensors are plants that are genetically engineered for sensing and reporting the presence of a specific contaminant, including agriculturally important biological agents. Phytosensors are constructed by transforming plants to contain specific biotic- or abiotic-inducible promoters fused to a reporter gene. When such transgenic plants encounter the target biotic or abiotic agent, the specific inducible promoter is triggered and subsequently drives the expression of the reporter gene, which produces a signal for detection. However, several systems lack robustness, rapid induction and promoter strength. Here, we tested the FLP/FRT recombination system in a construct containing a two gene cassette organization and examined its potential in transgenic Arabidopsis and tobacco plants using a β-glucuronidase (GUS) reporter. In this model system, a heat-shock inducible promoter was employed to control the expression of the FLP recombinase gene. Upon heat induction and subsequent active FLP-mediated excision event, the GUS gene was placed in close proximity to the 35S promoter resulting in an active GUS reporter expression. Our results demonstrate that the two gene cassette scheme of inducible FLP/FRT recombination system is functional in tobacco and Arabidopsis, providing additional insights into its possible application in phytosensing such as creating strong readout capabilities
    • …
    corecore