43 research outputs found

    Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy

    Get PDF
    BACKGROUND: Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS: Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS: CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r 2 = 0.46, p = 0.004, r 2 = 0.45, p = 0.004, respectively), TUNEL cell count (r 2 = 0.34, p = 0.02) and predicted both initial insult (r 2 = 0.62, p = 0.002) and outcome group (r 2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r 2 = 0.34, p = 0.01 and r 2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r 2 = 0.43, p = 0.01). CONCLUSION: Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model

    Prediction of brain tissue temperature using near-infrared spectroscopy

    Full text link
    Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of R2=0.713±0.157 (animal dataset) and R2=0.798±0.087 (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of 0.436±0.283°C (animal dataset) and 0.162±0.149°C (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications

    The Role of Music Therapy with Infants with Perinatal Brain Injury

    Get PDF
    Perinatal brain injury occurs in 5.14/1000 live births in England. A significant proportion of these injuries result from hypoxic ischaemic encephalopathy (HIE) in term infants and intracranial haemorrhage (IVH) or periventricular leukomalacia (PVL) in preterm infants. Standardised care necessitates minimal handling from parents and professionals to reduce the progression of injury. This can potentially increase parental stress through the physical inability to bond with their baby. Recent research highlights the ability of music therapy (MT) to empower parental bonding without handling, through sharing culturally informed personal music with their infant. This review therefore aimed to systematically evaluate the use of MT with infants diagnosed with perinatal brain injury in a neonatal intensive care unit (NICU). Search terms were combined into three categories (audio stimulation (MT), population (neonates) and condition (brain injury), and eight electronic databases were used to identify relevant studies following PRISMA guidelines. Eleven studies using music or vocal stimulation with infants diagnosed with perinatal brain injury were identified and quality assessed using Cochrane ROB2, the ROBINSI Tool and the Newcastle Ottawa Scale. Studies used either voice as live (n = 6) or pre-recorded (n = 3) interventions or pre-recorded instrumental music (n = 2). Studies had two primary areas of focus: developmental outcomes and physiological effects. Results suggested the use of music interventions led to a reduction of infants’ pain scores during procedures and cardiorespiratory events, improved feeding ability (increase oral feeding rate, volume intake and feeds per day) and resulted in larger amygdala volumes than control groups. Additionally, MT intervention on the unit supported long-term hospitalised infants in the acquisition of developmental milestones. Vocal soothing was perceived to be an accessible intervention for parents. However, infants with PVL showed signs of stress in complex interventions, which also potentially resulted in an increase in maternal anxiety in one study. MT with infants diagnosed with perinatal brain injury can have positive effects on infants’ behavioural and neurological parameters and support parental involvement in their infants’ developmental care. Further feasibility studies are required using MT to determine appropriate outcome measures for infants and the support required for parents to allow future comparison in large-scale randomised control trials

    Role of Optical Neuromonitoring in Neonatal Encephalopathy—Current State and Recent Advances

    Get PDF
    Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain

    Brain temperature monitoring in newborn infants:Current methodologies and prospects

    Get PDF
    Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed

    Chapter Near-Infrared Spectroscopy Measured Cerebral Blood Flow from Spontaneous Oxygenation Changes in Neonatal Brain Injury

    Get PDF
    Neonates with hypoxic-ischaemic (HI) brain injury were monitored using a broadband near-infrared spectroscopy (NIRS) system in the neonatal intensive care unit. The aim of this work is to use the NIRS cerebral oxygenation data (HbD = oxygenated-haemoglobin – deoxygenated-haemoglobin) combined with arterial saturation (SaO2) from pulse oximetry to calculate cerebral blood flow (CBF) based on the oxygen swing method, during spontaneous desaturation episodes. The method is based on Fick’s principle and uses HbD as a tracer; when a sudden change in SaO2 occurs, the change in HbD represents a change in tracer concentration, and thus it is possible to estimate CBF. CBF was successfully calculated with broadband NIRS in 11 HIE infants (3 with severe injury) for 70 oxygenation events on the day of birth. The average CBF was 18.0 ± 12.7 ml 100 g−1 min−1 with a range of 4 ml 100 g−1 min−1 to 60 ml 100 g−1 min−1. For infants with severe HIE (as determined by magnetic resonance spectroscopy) CBF was significantly lower (p = 0.038, d = 1.35) than those with moderate HIE on the day of birth

    Whole-Body Regeneration

    Get PDF
    This Open Access volume provides a comprehensive overview of the latest tools available to scientists to study the many facets of whole-body regeneration (WBR). The chapters in this book are organized into six parts. Part One provides a historical overview on the study of the WBR phenomena focusing on the primary challenges of this research. Parts Two and Three explore a series of non-vertebrate zoological contexts that provide experimental models for WBR, showing how they can be approached with cellular tools. Parts Four, Five, and Six discuss the future advancements of WBR, reporting about the cutting-edge techniques in genetics and omics used to dissect the underlying mechanisms of WBR, and systems biology approaches to reach a synthetic view of WBR. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Whole-Body Regeneration: Methods and Protocols is a valuable resource for scientists and researchers who want to learn more about this important and developing field

    Classification of brain injury severity using a hybrid broadband NIRS and DCS instrument with a machine learning approach

    Get PDF
    Optical biomarkers of neonatal hypoxic ischemic (HI) brain injury can offer the advantage of continuous, cot-side assessment of the degree of injury; research thus far has focused on examining different optical measured brain physiological signals and feature combinations to achieve this. To maximize the breadth of physiological characteristics being taken into consideration, a multimodal optical platform has been developed, allowing unique physiological insights into brain injury. In this paper we present an assessment of severity of injury using a state-of-the-art hybrid broadband Near Infrared Spectrometer (bNIRS) and Diffusion Correlation Spectrometer (DCS) instrument called FLORENCE with a machine learning pipeline. We demonstrate in the preclinical neonatal model (the newborn piglet) that our approach can identify different HI insult severity (controls, mild, severe). We show that a machine learning pipeline based on k-means clustering can be used to differentiate between the controls and the HI piglets with an accuracy of 78%, the mild severity insult piglets from the severe insult piglets with an accuracy of 90% and can also differentiate the 3 piglet groups with an accuracy of 80%. So, this analytics pipeline demonstrates how optical data from multiple instruments can be processed towards markers of brain health

    The Extracellular Vesicle Citrullinome and Signature in a Piglet Model of Neonatal Seizures

    Get PDF
    Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment
    corecore