35 research outputs found

    Identification of a Novel Actin-Binding Domain within the Rho Guanine Nucleotide Exchange Factor TEM4

    Get PDF
    Spatio-temporal activation of Rho GTPases is essential for their function in a variety of biological processes and is achieved in part by regulating the localization of their activators, the Rho guanine nucleotide exchange factors (RhoGEFs). In this study, we provide the first characterization of the full-length protein encoded by RhoGEF TEM4 and delineate its domain structure, catalytic activity, and subcellular localization. First, we determined that TEM4 can stimulate guanine nucleotide exchange on RhoA and the related RhoB and RhoC isoforms. Second, we determined that TEM4, like other Dbl RhoGEFs, contains a functional pleckstrin homology (PH) domain immediately C-terminal to the catalytic Dbl homology (DH) domain. Third, using immunofluorescence analysis, we showed that TEM4 localizes to the actin cytoskeleton through sequences in the N-terminus of TEM4 independently of the DH/PH domains. Using site-directed mutagenesis and deletion analysis, we identified a minimal region between residues 81 and 135 that binds directly to F-actin and has an ∼90-fold higher affinity for ATP-loaded F-actin. Finally, we demonstrated that a single point mutation (R130D) within full-length TEM4 abolishes actin binding and localization of TEM4 to the actin cytoskeleton, as well as dampens the in vivo activity of TEM4 towards RhoC. Taken together, our data demonstrate that TEM4 contains a novel actin binding domain and binding to actin is essential for TEM4 subcellular localization and activity. The unique subcellular localization of TEM4 suggests a spatially-restricted activity and expands the diversity of mechanisms by which RhoGEF function can be regulated

    Signaling Interplay in Ras Superfamily Function

    Get PDF
    Ras proteins function as signaling hubs that are activated by convergent signaling pathways initiated by extracellular stimuli. Activated Ras in turn regulates a diversity of downstream cytoplasmic signaling cascades. Ras proteins are founding members of a large superfamily of small GTPases that have significant sequence and biochemical similarities. Recent observations have established a complex signaling interplay between Ras and other members of the family. A key biochemical mechanism facilitating this crosstalk involves guanine nucleotide exchange factors (GEFs), which serve as regulators and effectors, as well as signaling integrators, of Ras signaling

    Chemotherapy and Stem Cell Transplantation Increase p16

    Get PDF
    AbstractThe expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p=0.003), prior autologous transplantation (p=0.01) and prior exposure to alkylating agents (p=0.01). Transplantation was associated with a marked increase in p16INK4a expression 6months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p=0.002) than allogeneic transplant recipients (1.9-fold increase, p=0.0004). RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells

    Phosphorylation by Protein Kinase CΞ± Regulates RalB Small GTPase Protein Activation, Subcellular Localization, and Effector Utilization

    Get PDF
    Ras-like (Ral) small GTPases are regulated downstream of Ras and the noncanonical Ral guanine nucleotide exchange factor (RalGEF) effector pathway. Despite RalA and RalB sharing 82% sequence identity and utilization of shared effector proteins, their roles in normal and neoplastic cell growth have been shown to be highly distinct. Here, we determined that RalB function is regulated by protein kinase CΞ± (PKCΞ±) phosphorylation. We found that RalB phosphorylation on Ser-198 in the C-terminal membrane targeting sequence resulted in enhanced RalB endomembrane accumulation and decreased RalB association with its effector, the exocyst component Sec5. Additionally, RalB phosphorylation regulated vesicular trafficking and membrane fusion by regulating v- and t-SNARE interactions. RalB phosphorylation regulated vesicular traffic of Ξ±5-integrin to the cell surface and cell attachment to fibronectin. In summary, our data suggest that phosphorylation by PKCΞ± is critical for RalB-mediated vesicle trafficking and exocytosis

    Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression

    Get PDF
    Autoinhibition of the Rho guanine nucleotide exchange factor ASEF is relieved by interaction with the APC tumor suppressor. Here we show that binding of the armadillo repeats of APC to a β€˜core APC-binding’ (CAB) motif within ASEF, or truncation of the SH3 domain of ASEF, relieves autoinhibition, allowing the specific activation of CDC42. Structural determination of autoinhibited ASEF reveals that the SH3 domain forms an extensive interface with the catalytic DH and PH domains to obstruct binding and activation of CDC42, and the CAB motif is positioned adjacent to the SH3 domain to facilitate activation by APC. In colorectal cancer cell lines, full-length, but not truncated, APC activates CDC42 in an ASEF-dependent manner to suppress anchorage-independent growth. We therefore propose a model in which ASEF acts as a tumor suppressor when activated by APC and inactivation of ASEF by mutation or APC truncation promotes tumorigenesis

    TEM4 is a junctional Rho GEF required for cell-cell adhesion, monolayer integrity and barrier function

    Get PDF
    Signaling events mediated by Rho family GTPases orchestrate cytoskeletal dynamics and cell junction formation. The activation of Rho GTPases is tightly regulated by guanine-nucleotide-exchange factors (GEFs). In this study, we identified a novel Rho-specific GEF called TEM4 (tumor endothelial marker 4) that associates with multiple members of the cadherin–catenin complex and with several cytoskeleton-associated proteins. Depending on confluence, TEM4 localized to either actin stress fibers or areas of cell–cell contact. The junctional localization of TEM4 was independent of actin binding. Depletion of endogenous TEM4 by shRNAs impaired Madin–Darby canine kidney (MDCK) and human umbilical vein endothelial cell (HUVEC) cell junctions, disrupted MDCK acini formation in 3D culture and negatively affected endothelial barrier function. Taken together, our findings implicate TEM4 as a novel and crucial junctional Rho GEF that regulates cell junction integrity and epithelial and endothelial cell function

    Rho GTPase Transcriptome Analysis Reveals Oncogenic Roles for Rho GTPase-Activating Proteins in Basal-like Breast Cancers

    Get PDF
    The basal-like breast cancer (BLBC) subtype accounts for a disproportionately high percentage of overall breast cancer mortality. The current therapeutic options for BLBC need improvement; hence, elucidating signaling pathways that drive BLBC growth may identify novel targets for the development of effective therapies. Rho GTPases have previously been implicated in promoting tumor cell proliferation and metastasis. These proteins are inactivated by Rho-selective GTPase-activating proteins (RhoGAPs), which have generally been presumed to act as tumor suppressors. Surprisingly, RNA-Seq analysis of the Rho GTPase signaling transcriptome revealed high expression of several RhoGAP genes in BLBC tumors, raising the possibility that these genes may be oncogenic. To evaluate this, we examined the roles of two of these RhoGAPs, ArhGAP11A (also known as MP-GAP) and RacGAP1 (also known as MgcRacGAP), in promoting BLBC. Both proteins were highly expressed in human BLBC cell lines, and knockdown of either gene resulted in significant defects in the proliferation of these cells. Knockdown of ArhGAP11A caused CDKN1B/p27-mediated arrest in the G1 phase of the cell cycle, whereas depletion of RacGAP1 inhibited growth through the combined effects of cytokinesis failure, CDKN1A/p21-mediated RB1 inhibition, and the onset of senescence. Random migration was suppressed or enhanced by the knockdown of ArhGAP11A or RacGAP1, respectively. Cell spreading and levels of GTP-bound RhoA were increased upon depletion of either GAP. We have established that, via the suppression of RhoA, ArhGAP11A and RacGAP1 are both critical drivers of BLBC growth, and propose that RhoGAPs can act as oncogenes in cancer

    Identification of a novel actin-binding domain within the Rho guanine nucleotide exchange factor TEM4.

    Get PDF
    Spatio-temporal activation of Rho GTPases is essential for their function in a variety of biological processes and is achieved in part by regulating the localization of their activators, the Rho guanine nucleotide exchange factors (RhoGEFs). In this study, we provide the first characterization of the full-length protein encoded by RhoGEF TEM4 and delineate its domain structure, catalytic activity, and subcellular localization. First, we determined that TEM4 can stimulate guanine nucleotide exchange on RhoA and the related RhoB and RhoC isoforms. Second, we determined that TEM4, like other Dbl RhoGEFs, contains a functional pleckstrin homology (PH) domain immediately C-terminal to the catalytic Dbl homology (DH) domain. Third, using immunofluorescence analysis, we showed that TEM4 localizes to the actin cytoskeleton through sequences in the N-terminus of TEM4 independently of the DH/PH domains. Using site-directed mutagenesis and deletion analysis, we identified a minimal region between residues 81 and 135 that binds directly to F-actin and has an ∼90-fold higher affinity for ATP-loaded F-actin. Finally, we demonstrated that a single point mutation (R130D) within full-length TEM4 abolishes actin binding and localization of TEM4 to the actin cytoskeleton, as well as dampens the in vivo activity of TEM4 towards RhoC. Taken together, our data demonstrate that TEM4 contains a novel actin binding domain and binding to actin is essential for TEM4 subcellular localization and activity. The unique subcellular localization of TEM4 suggests a spatially-restricted activity and expands the diversity of mechanisms by which RhoGEF function can be regulated

    Arg 130 in TEM4 ABD is essential for F-actin binding.

    No full text
    <p>A, Alignment of residues 125-135 of human TEM4 with other species. Residues tested for actin binding <i>in vivo</i> are marked with a dot above the alignment. The arginine residue (R130), that we determined to be critical for binding to F-actin, is marked with the asterisk. B, Wild-type and point mutants of GFP-TEM4 1-582 were used to further map residues essential for actin association <i>in vivo</i> in live NIH3T3 cells. C, Coomassie Blue-stained gel comparing ATP/ADP-P<sub>i</sub>-F-actin binding capacity of wild-type (WT) and R130D mutant of GST-ABD in co-sedimentation experiments. D, Equilibrium binding of WT and R130D mutant of TEM4 ABD to ATP/ADP-P<sub>i</sub>-F-actin calculated from co-sedimentation experiments as shown in Fig. 4. Two independent co-sedimentation experiments were used to generate the data.</p

    Actin binding is essential for subcellular localization and <i>in vivo</i> activity of TEM4.

    No full text
    <p>A, R130 is essential for the localization of TEM4 to actin stress fibers. HUVECs expressing GFP, GFP-FL TEM4 WT or R130D mutant were imaged live with tRFP-Lifeact marker. Scale bar, 10 Β΅m. B, The N-terminus is essential for TEM4 <i>in vivo</i> activity. HUVECs expressing GFP-tagged TEM4 constructs were assessed for levels of active RhoC by affinity pull-down. C, Mutation of R130 impairs RhoC activation by TEM4. 293T cells were transfected with GFP-tagged wild-type or R130D mutant of TEM4 and levels of active RhoC were measured by affinity pull-down and presented in a bar graph (D). Data shown are representative of three independent experiments.</p
    corecore