5 research outputs found

    Association of functional variants of phase i and ii genes with chronic obstructive pulmonary disease in a Serbian population

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a complex disorder characterized by increased oxidative stress. Functional genetic variants of phase I and II genes are implicated in oxidants antioxidants imbalance and may be involved in COPD development. In this study, we aimed to investigate the role of cytochrome P450 (CYP), glutathione S-transferase (GST) and microsomal epoxide hydrolase (mEH) functional variants in the pathogenesis of COPD in a Serbian population. Methods: The genotypes of 122 COPD patients and 100 controls with normal lung function were determined for CYP1A1 *1A/*2A, CYP2E1 *1A/*5B, GSTM1 null, GSTT1 null GSTP1 11e105Val, mEH Tyr113His and mEH His139Arg gene variants. Results: Results obtained showed that GSTM1 null variant was significantly more represented in COPD patients than in controls (61.5% vs. 47.0%; OR=1.80; p=0.042). Also, a significant difference was observed for combinations of GSTM1 null and GSTP1 105Val/(Val) (38.5% vs. 24.0%; OR=1.98; p=0.029), as well as for CYP1A1 *1A/*2A, GSTM1 null and mEH 113His/(His) genotypes (7.4% vs. 1.0%; OR=7.88; p=0.025). Conclusions: These are the first data concerning the analysis of the variants of phase I and II genes in the pathogenesis of COPD in a Serbian population. Results obtained in this study open up the possibility for thorough analyses of the role of genetic factors in COPD on larger cohorts. Also, they implicate the importance of previously described genetic associations with COPD in our population, as well as reveal a new one, not reported so far

    Manganese Metalloproteins

    No full text
    While manganese has been successfully exploited as a spectroscopic probe of EPR silent centers (Zn, Ca, Mg) in metalloenzymes, it was only during the last decade that manganese-containing metalloenzymes were investigated in great detail. Indeed, in some biological systems it remains unclear whether iron and/or manganese is required for catalytic competency. Binuclear manganese enzymes are a small group of enzymes that catalyze a variety of chemical reactions and are involved in numerous metabolic functions. In this review the structural and biochemical properties of these enzymes are described. The contributions of electron paramagnetic resonance-related techniques to our understanding of the structure and reactivity of binuclear manganese enzymes are discussed and, where appropriate, supported by data obtained from complementary spectroscopic methods. This article is intended as a guide to illustrate the usefulness of electron paramagnetic resonancerelated techniques in the study of these enzymes

    Visualization of the reaction trajectory and transition state in a hydrolytic reaction catalyzed by a metalloenzyme

    No full text
    Metallohydrolases are a vast family of enzymes that play crucial roles in numerous metabolic pathways. Several members have emerged as targets for chemotherapeutics. Knowledge about their reaction mechanisms and associated transition states greatly aids the design of potent and highly specific drug leads. By using a high-resolution crystal structure, we have probed the trajectory of the reaction catalyzed by purple acid phosphatase, an enzyme essential for the integrity of bone structure. In particular, the transition state is visualized, thus providing detailed structural information that may be exploited in the design of specific inhibitors for the development of new anti-osteoporotic chemotherapeutics

    The CFTR M470V gene variant as a potential modifier of COPD severity: Study of Serbian population

    No full text
    Chronic obstructive pulmonary disease (COPD) is a complex disease influenced by genetic and environmental factors. Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an important component of the lung tissue homeostasis, involved in the regulation of the rate of mucociliary clearance. As it is known that certain CFTR variants have consequences on the function of CFTR protein, the aim of this study was to examine the possible role of F508del, M470V, Tn locus, and R75Q variants in COPD development and modulation. Total number of 86 COPD patients and 102 control subjects were included in the study. Possible association between COPD susceptibility, severity, and onset of the disease and allele or genotype of four analyzed CFTR variants was examined. No associations were detected between COPD development, onset of the disease and tested CFTR alleles and genotypes. However, VV470 genotype was associated with mild/moderate COPD stages in comparison to severe/very severe ones (OR = 0.29, 95% CI = 0.11-0.80, p = 0.016). Our study showed that patients with VV470 genotype had a 3.4-fold decreased risk for the appearance of severe/very severe COPD symptoms, and the obtained results indicate that this genotype may have a protective role. These results also suggest the importance of studying CFTR gene as a modifier of this disease
    corecore