8 research outputs found

    Skeletogenesis and sequence heterochrony in rodent evolution, with particular emphasis on the African striped mouse, Rhabdomys pumilio (Mammalia)

    Get PDF
    Data documenting skeletal development in rodents, the most species-rich ‘order' of mammals, are at present restricted to a few model species, a shortcoming that hinders exploration of the morphological and ecological diversification of the group. In this study we provide the most comprehensive sampling of rodent ossification sequences to date, with the aim of exploring whether heterochrony is ubiquitous in rodent evolution at the onset of skeletal formation. The onset of ossification in 17 cranial elements and 24 postcranial elements was examined for eight muroid and caviomorph rodent species. New data are provided for two non-model species. For one of these, the African striped mouse, Rhabdomys pumilio, sampling was extended by studying 53 autopodial elements and examining intraspecific variation. The Parsimov method of studying sequence heterochrony was used to explore the role that changes in developmental timing play in early skeletal formation. Few heterochronies were found to diagnose the muroid and caviomorph clades, suggesting conserved patterning in skeletal development. Mechanisms leading to the generation of the wide range of morphological diversity encapsulated within Rodentia may be restricted to later periods in development than those studied in this work. Documentation of skeletogenesis in Rhabdomys indicates that intraspecifc variation in ossification sequence pattern is present, though not extensive. Our study suggests that sequence heterochrony is neither pivotal nor prevalent during early skeletal formation in rodent

    Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals

    Get PDF
    Background Here we provide the most comprehensive study to date on the cranial ossification sequence in Lipotyphla, the group which includes shrews, moles and hedgehogs. This unique group, which encapsulates diverse ecological modes, such as terrestrial, subterranean, and aquatic lifestyles, is used to examine the evolutionary lability of cranial osteogenesis and to investigate the modularity of development. Results An acceleration of developmental timing of the vomeronasal complex has occurred in the common ancestor of moles. However, ossification of the nasal bone has shifted late in the more terrestrial shrew mole. Among the lipotyphlans, sequence heterochrony shows no significant association with modules derived from developmental origins (that is, neural crest cells vs. mesoderm derived parts) or with those derived from ossification modes (that is, dermal vs. endochondral ossification). Conclusions The drastic acceleration of vomeronasal development in moles is most likely coupled with the increased importance of the rostrum for digging and its use as a specialized tactile surface, both fossorial adaptations. The late development of the nasal in shrew moles, a condition also displayed by hedgehogs and shrews, is suggested to be the result of an ecological reversal to terrestrial lifestyle and reduced functional importance of the rostrum. As an overall pattern in lipotyphlans, our results reject the hypothesis that ossification sequence heterochrony occurs in modular fashion when considering the developmental patterns of the skull. We suggest that shifts in the cranial ossification sequence are not evolutionarily constrained by developmental origins or mode of ossification

    Skeletogenesis and sequence heterochrony in rodent evolution, with particular emphasis on the African striped mouse, <i>Rhabdomys pumilio</i> (Mammalia)

    Get PDF
    Data documenting skeletal development in rodents, the most species-rich ‘order’ of mammals, are at present restricted to a few model species, a shortcoming that hinders exploration of the morphological and ecological diversification of the group. In this study we provide the most comprehensive sampling of rodent ossification sequences to date, with the aim of exploring whether heterochrony is ubiquitous in rodent evolution at the onset of skeletal formation. The onset of ossification in 17 cranial elements and 24 postcranial elements was examined for eight muroid and caviomorph rodent species. New data are provided for two non-model species. For one of these, the African striped mouse, Rhabdomys pumilio, sampling was extended by studying 53 autopodial elements and examining intraspecific variation. The Parsimov method of studying sequence heterochrony was used to explore the role that changes in developmental timing play in early skeletal formation. Few heterochronies were found to diagnose the muroid and caviomorph clades, suggesting conserved patterning in skeletal development. Mechanisms leading to the generation of the wide range of morphological diversity encapsulated within Rodentia may be restricted to later periods in development than those studied in this work. Documentation of skeletogenesis in Rhabdomys indicates that intraspecifc variation in ossification sequence pattern is present, though not extensive. Our study suggests that sequence heterochrony is neither pivotal nor prevalent during early skeletal formation in rodents.Facultad de Ciencias Naturales y Muse

    Expression and developmental regulation of the Hydra-RFamide and Hydra-LWamide preprohormone genes in Hydra: Evidence for transient phases of head formation

    Get PDF
    AbstractHydra magnipapillatahas three distinct genes coding for preprohormones A, B, and C, each yielding a characteristic set of Hydra-RFamide (Arg-Phe-NH2) neuropeptides, and a fourth gene coding for a preprohormone that yields various Hydra-LWamide (Leu-Trp-NH2) neuropeptides. Using a whole-mount double-labelingin situhybridization technique, we found that each of the four genes is specifically expressed in a different subset of neurons in the ectoderm of adultHydra.The preprohormone A gene is expressed in neurons of the tentacles, hypostome (a region between tentacles and mouth opening), upper gastric region, and peduncle (an area just above the foot). The preprohormone B gene is exclusively expressed in neurons of the hypostome, whereas the preprohormone C gene is exclusively expressed in neurons of the tentacles. The Hydra-LWamide preprohormone gene is expressed in neurons located in all parts ofHydrawith maxima in tentacles, hypostome, and basal disk (foot). Studies on animals regenerating a head showed that the prepro-Hydra-LWamide gene is expressed first, followed by the preprohormone A and subsequently the preprohormone C and the preprohormone B genes. This sequence of events could be explained by a model based on positional values in a morphogen gradient. Our head-regeneration experiments also give support for transient phases of head formation: first tentacle-specific preprohormone C neurons (frequently associated with a small tentacle bud) appear at the center of the regenerating tip, which they are then replaced by hypostome-specific preprohormone B neurons. Thus, the regenerating tip first attains a tentacle-like appearance and only later this tip develops into a hypostome. In a developing bud ofHydra,tentacle-specific preprohormone C neurons and hypostome-specific preprohormone B neurons appear about simultaneously in their correct positions, but during a later phase of head development, additional tentacle-specific preprohormone C neurons appear as a ring at the center of the hypostome and then disappear again. Nerve-freeHydraconsisting of only epithelial cells do not express the preprohormone A, B, or C or the LWamide preprohormone genes. These animals, however, have a normal phenotype, showing that the preprohormone A, B, and C and the LWamide genes are not essential for the basic pattern formation ofHydra

    Circumventing the polydactyly ‘constraint’: the mole's ‘thumb’

    Full text link
    Talpid moles across all northern continents exhibit a remarkably large, sickle-like radial sesamoid bone anterior to their five digits, always coupled with a smaller tibial sesamoid bone. A possible developmental mechanism behind this phenomenon was revealed using molecular markers during limb development in the Iberian mole (Talpa occidentalis) and a shrew (Cryptotis parva), as shrews represent the closest relatives of moles but do not show these conspicuous elements. The mole's radial sesamoid develops later than true digits, as shown by Sox9, and extends into the digit area, developing in relation to an Msx2-domain at the anterior border of the digital plate. Fgf8 expression, marking the apical ectodermal ridge, is comparable in both species. Developmental peculiarities facilitated the inclusion of the mole's radial sesamoid into the digit series; talpid moles circumvent the almost universal pentadactyly constraint by recruiting wrist sesamoids into their digital region using a novel developmental pathway and timing

    Skeletogenesis and sequence heterochrony in rodent evolution, with particular emphasis on the African striped mouse, Rhabdomys pumilio (Mammalia)

    Full text link
    Data documenting skeletal development in rodents, the most species-rich ‘order’ of mammals, are at present restricted to a few model species, a shortcoming that hinders exploration of the morphological and ecological diversification of the group. In this study we provide the most comprehensive sampling of rodent ossification sequences to date, with the aim of exploring whether heterochrony is ubiquitous in rodent evolution at the onset of skeletal formation. The onset of ossification in 17 cranial elements and 24 postcranial elements was examined for eight muroid and caviomorph rodent species. New data are provided for two non-model species. For one of these, the African striped mouse, Rhabdomys pumilio, sampling was extended by studying 53 autopodial elements and examining intraspecific variation. The Parsimov method of studying sequence heterochrony was used to explore the role that changes in developmental timing play in early skeletal formation. Few heterochronies were found to diagnose the muroid and caviomorph clades, suggesting conserved patterning in skeletal development. Mechanisms leading to the generation of the wide range of morphological diversity encapsulated within Rodentia may be restricted to later periods in development than those studied in this work. Documentation of skeletogenesis in Rhabdomys indicates that intraspecifc variation in ossification sequence pattern is present, though not extensive. Our study suggests that sequence heterochrony is neither pivotal nor prevalent during early skeletal formation in rodents
    corecore