18 research outputs found

    Pico-electrochemistry in humidity-equilibrated electrolyte films on nano-cotton:Three- and four-point probe voltammetry and impedance

    Get PDF
    Cotton-extracted cellulose nanocrystals are spin-coated from aqueous suspension (0.6 wt%) onto glass slides to give ca. 40 nm thick films. Impregnation with LiCl and redox active Fe(CN)63−/4− into this film gives extremely thin redox active layers (typically 170 nm at 60% relative humidity), which were investigated with a 4-point or 3-point probe electrochemical system based on 250 ÎŒm diameter platinum wire probes. Both voltammetry and impedance measurements were performed and effects from humidity, concentrations, and time domain on measurements are reported. Only a pico-litre volume under the working electrode was “active” to give a novel electroanalytical “spot test”.publisher: Elsevier articletitle: Pico-electrochemistry in humidity-equilibrated electrolyte films on nano-cotton: Three- and four-point probe voltammetry and impedance journaltitle: Sensors and Actuators B: Chemical articlelink: http://dx.doi.org/10.1016/j.snb.2015.01.004 content_type: article copyright: Copyright © 2015 Elsevier B.V. All rights reserved.status: publishe

    Hydrothermal conversion of one-photon-fluorescent poly-(4-vinylpyridine) into two-photon-fluorescent carbon nanodots

    Get PDF
    A novel two-photon-fluorescent N,O-heteroatom-rich carbon nanomaterial has been synthesized and characterized. The new carbon nanoparticles were produced by hydrothermal conversion from a one-photon-fluorescent poly(4-vinylpyridine) precursor (P4VP). The carbonized particles (cP4VP dots) with nonuniform particle diameter (ranging from sub-6 to 20 nm with some aggregates up to 200 nm) exhibit strong fluorescence properties in different solvents and have also been investigated for applications in cell culture media. The cP4VP dots retain their intrinsic fluorescence in a cellular environment and exhibit an average excited-state lifetime of 2.0 ± 0.9 ns in the cell. The cP4VP dots enter HeLa cells and do not cause significant damage to outer cell membranes. They provide one-photon or two-photon fluorescent synthetic scaffolds for imaging applications and/or drug delivery

    Surface State Trapping and Mobility Revealed by Junction Electrochemistry of Nano-Cr2O3

    No full text
    Hydrous chromium oxide nanoparticles (~15 nm diameter) are assembled from a colloidal solution onto tin-doped indium oxide (ITO) substrates by layer-by-layer electrostatic deposition with aqueous carboxymethyl-cellulose sodium salt binder. Calcination produces purely inorganic mesoporous films (average thickness increase per layer of 1 nm) of chromia Cr2O3. When immersed in aqueous carbonate buffer at pH 10 and investigated by cyclic voltammetry, a chemically reversible oxidation is observed because of a conductive layer at the chromia surface (formed during initial potential cycling). This is attributed to a surface CrIII/IV process. At more positive potentials higher oxidation states are accessible before film dissolution. The effects of film thickness and pH on voltammetric responses are studied. X-Ray photoelectron spectroscopy (XPS) evidence for higher chromium oxidation states is obtained. ITO junction experiments are employed to reveal surface conduction by CrIII/IV and CrIV/V ‘mobile surface states’ and an estimate is obtained for the apparent CrIII/IV charge surface diffusion coefficient Dapp = 10–13 m2 s–1. The junction experiment distinguishes mobile surface redox sites from energetically distinct deeper-sitting ‘trapped states’

    Surface-dopylated carbon nanoparticles sense gas-induced ph changes

    No full text
    Carbon nanoparticles of ca. 9-18 nm diameter (Emperor 2000ℱ) are surface-modified by covalently linking l-dopa-boc (boc-protected l-3,4-dihydroxyphenylalanine) with a surface coverage of approximately 100 per particle (or 3 × 10 13 cm -2). In solution environments these redox-active nanoparticles provide chemically stable and pH-sensitive voltammetirc responses (reversible 2-electron 2-proton oxidation) over a pH range from 2 to 12. When mixed into Dowex 50 Wx4 cation exchanger or Dowex 50 1x2 anion exchanger and placed in contact with a glassy carbon electrode in a flow of humidified gas, the l-dopa-boc-modified carbon nanoparticles provide pH-sensitive surface probes to monitor the surface conditions. In a two-terminal cell it is demonstrated that gas flow measurements are possible with both modified cation and anion exchanger particles in contact to glassy carbon electrodes. The anion exchanger particles allow pH control after pre-conditioning in phosphate buffer. Loading-dependent sensitivity to ammonia gas is investigated and high sensitivity to ammonia is observed for Dowex 50 1x2 anion exchanger pre-equilibrated in phosphate buffer pH 3 and decorated with l-dopa-boc-modified carbon nanoparticles. Responses are observed with sequential injections of 1 cm 3 ammmonia into a gas flow-through device
    corecore