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Abstract 

 

Cotton-extracted cellulose nanocrystals are spin-coated from aqueous suspension (0.6 

wt%) onto glass slides to give ca. 40 nm thick films. Impregnation with LiCl and redox 

active Fe(CN)6
3-/4- into this film gives extremely thin redox active layers (typically 170 nm 

at 60% relative humidity), which were investigated with a 4-point or 3-point probe 

electrochemical system based on 250 m diameter platinum wire probes. Both 

voltammetry and impedance measurements were performed and effects from humidity, 

concentrations, and time domain on measurements are reported. Only a pico-litre volume 

under the working electrode was “active” to give a novel electroanalytical “spot test”. 

 

Keywords: spot test, cotton, cellulose nanowhiskers, cellulose nanocrystals, 

electroanalysis, ferrocyanide, sensor. 
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1. Introduction 

 

Small-scale voltammetric analysis is desirable in particular for (i) analysis of expensive 

(e.g. bio-chemical) redox systems [1], (ii) multi-electrode [2] or high throughput multi-

well analysis where thousands of samples need to be screened [3], and (iii) fast response 

films for example for gas sensing applications [4] where diffusion times need to be 

minimised. Conventional voltammetric cells operate with typically 10 to 100 cm3 volume 

of solvents and in recent work on microfluidic devices this has been reduced to ca. 10-9 cm3 

[5]. Here, we aim to reduce this volume by yet another couple of orders of magnitude and 

propose a method where 10-12 cm-3 sample volumes could be analysed routinely. 

 

Analysis on cellulose substrates has a long history [6] with many types of pH and spot tests 

[7,8] as well as chromatography being performed. Paper and cellulose remain popular 

substrates for new types of electroanalytical methods based on micro-fluidic 

processes/systems on disposable sensors [9,10]. Nano-cellulose materials have opened up 

further opportunities in electroanalysis [11] with pure cellulose [12] or composite films 

[13,14] being readily re-constituted or regenerated, for example on ITO electrode surfaces 

[15]. Surface-modified nanocrystalline cellulose whiskers have been re-constituted into 

redox active films with electron transfer occurring between the ferrocene grafts along the 

nanocrystal surface [16]. 
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Figure 1 

 

 

Here, a thin film of cotton-extracted nanocrystalline cellulose (ca. 40 nm thickness) is 

formed via a spin-coating protocol. The glass slide with cellulose nanocrystals and 

impregnated with a very small volume of electrolyte is shown in Figure 1A. Although 

almost invisible, the four-point probe measurements clearly reveal the presence of the 

nanoparticle film and the humidified electrolyte film with redox active components. In order 

to study the behaviour of the system both 3-point probe (Figure 1B) and 4-point probe 

(Figure 1C) experiments were performed for the model case of the one-electron Fe(CN)6
3-

/4- redox system.  

 

 

 

 

 

2. Experimental 

2.1. Chemical Reagents 

LiCl, K4Fe(CN)6, and K3Fe(CN)6 were obtained from Sigma-Aldrich or Fisons and used 

without further purification. Aqueous solutions were prepared using ultrapure water at 

20 °C (resistivity ≥ 18.2 MΩ cm). 
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2.2 Extraction of cellulose nanocrystals from cotton 

Nanocrystalline cellulose particles were extracted from pure cotton wool via acid 

hydrolysis using a 64 wt% aqueous sulfuric acid solution (8.75 ml H2SO4 solution per g of 

cotton) for 40 min at 45 °C under constant stirring. The obtained suspension was 

centrifuged three times with intermittent washes after quenching the reaction with an equal 

amount of cold deionized water. The suspension was then dialyzed against tap water to 

remove residual free acid. A stable dispersion was obtained by sonication (Branson sonifier 

250, 10 % amplitude in pulse mode, T < 25 oC) and filtration over a No2 fritted filter to 

remove aggregates. Ion exchange resin Amberlite MB 6113 was then added to the 

dispersion under agitation for 1 hour to protonate the nanocrystal surface and remove non-

H+ ions. The ion exchange resin was removed by filtration followed by another sonication 

step to individualise the cellulose nanocrystals. The concentration of the final dispersion 

was determined to be 0.6 wt% by gravimetric analysis. 

 

2.3. Instrumentation and Procedures 

Electrochemical measurements were performed at 20 ± 2 °C using an Autolab PGSTAT12 

bipotentiostat (Metrohm, UK). A three- or four-electrode configuration was employed with 

250 m diameter platinum wire electrodes with the ends flame-cleaned before use. A 

Jandel 4-point probe stage was employed initially with standard WC probes (which gave 

unreliable voltammetry due to more complex electron transfer) and then with platinum wire 

probes. Relative humidity was measured with a TFA Dostmann/Wertheim sensor. A WS-

650Mz-23NPP (Laurell Technologies) spin coater was used to spin the cellulose 

nanocrystals from a 0.6wt% aqueous suspension onto glass slides (prepared from 
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microscopy slides). Scanning electron microscopy (SEM) images were obtained after 5 nm 

chromium coating with a JSM-6480LV (JEOL, Japan) and analysed using imageJ 1.48v 

software. Atomic Force Microscopy (AFM) images were obtained using a Digital 

Instruments Nanoscope IIIa Multimode Scanning Probe Microscope in tapping mode 

(Veeco TESP probes). 

 

2.4. Film Formation 

A solution of 0.6wt% of nano-cotton in water was spin-coated onto a glass slide (cleaned 

by heat treatment for 30 minutes at 450 oC)  to obtain the nano-cotton film. Five coatings 

were applied by spinning at 500 rpm (15 s) then 3000 rpm (30s) per coating. Electron 

microscopy (Figure 2A) and atomic force microscopy (Figure 2B and 2C) images confirm 

a uniform deposit with a typical thickness (see cross-section in Figure 2C) of 40 nm.  

 

 

 

Figure 2 

 

 

An electrolyte solution containing 0.1 M LiCl and 1 mM K4Fe(CN)6 and 1 mM K3Fe(CN)6 

(unless stated otherwise) in water is then deposited evenly on the cotton-modified glass 

slide (1 L on 1 cm2) and the sample is placed in an oven to equilibrate for 60 minutes at 

100 oC. Once removed from the oven, the sample was re-equilibrated in air (or under 

controlled humidity) for 60 minutes before performing electrochemical experiments. The 
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equilibrium concentration of LiCl is relative humidity (RH) dependent as described by the 

approximate relationship given in Equation 1 (derived from reference [17]; note an error 

in this reference where values for constants A and B in table 1 are exchanged; LiCl solution 

density values obtained from [18]). For a range of relative humidities from 40% to 80% 

the equilibrium concentration of LiCl (in mol dm-3) in water is predicted to range from 8.0 

to 4.5 mol dm-3. This corresponds to an electrolyte solution volume decrease of 80 to 45 

times, respectively. 

 

 LiClcinRH  198.0675.0exp100%)(                                                         (1) 

 

 

 

3. Results and Discussion 

 

Initially, 3-point probe voltammetry experiments were performed with a deposit of 0.1 M 

LiCl and 1 mM K4Fe(CN)6 and 1 mM K3Fe(CN)6 in the cotton-derived cellulose 

nanocrystal film. As a result of the atmospheric relative humidity, this solution will 

equilibrate to a lower volume. Typically, experiments were performed at 60% relative 

humidity, which based on Equation 1 leads to an approximate LiCl concentration of 6 M 

or a 60-fold decrease in solution volume. Accordingly, the redox system is 60 mM 

K4Fe(CN)6 and 60 mM K3Fe(CN)6. 

 

Figure 3 
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Figure 3 shows typical cyclic voltammetry data for the Fe(CN)6
3-/4- redox system with the 

electrochemically reversible oxidation/reduction clearly visible (see Equation 2). The 

voltammetric signal is centred at Emid = ½ Ep,ox + ½ Ep,red = 0.0 V due to the platinum 

pseudo-reference electrode being placed into the same Fe(CN)6
3-/4- redox solution. 

 

Fe(CN)6
3- (aq)     +     e-   Fe(CN)6

4- (aq)                        (2) 

 

When adjusting the relative humidity (by adding a humid nitrogen flow into a Perspex 

containment) from 60% to 80%, the voltammetric signal is affected only insignificantly. 

Generally, the voltammetric response increases with humidity, which may be attributed to 

two effects: (i) the volume of solution is increased and thereby more Fe(CN)6
3-/4- is 

accessible and (ii) the resistance component in the voltammetric signals (vide infra) is 

lowered and therefore the peak current increased. Overall, the effect of humidity seemed 

less important and therefore the remaining measurements were performed at ambient ca. 

60% relative humidity. 

 

Repeat measurements at different points on the sample revealed some variability (+/- 50%), 

which is likely to be caused either by thickness variations in the deposited cellulose 

nanocrystal film or variation in surface tension (vide infra). Voltammetric peak responses 

show no pronounced diffusional “tail” as is observed for conventional diffusion-controlled 

behaviour. The observed peak responses are therefore associated with a local “confined” 
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diffusion space possibly underneath the working electrode probe. When changing the scan 

rate, the charge under the voltammetric signal remains relatively constant (see Figure 3B 

and 3C) with only a slight decrease observed at higher scan rates. The charge under the 

peak is typically 3.6 C, which suggests a 37 pmol redox active component, or an active 

volume of 310 pL. This suggests an “active spot” on the nanocrystal film with ca. 500 m 

radius which compares to the platinum wire radius of 125 m. Most likely, a meniscus of 

active solution is present surrounding the working electrode (see Figure 3D). 

 

Figure 4 shows 3-point probe voltammetry for samples with varying concentration of 

Fe(CN)6
3- and Fe(CN)6

4-. Similarly clear voltammetric features are observed at lower 

concentrations, but the reference potential is less stable and therefore a shift of the signal 

is seen. Perhaps surprisingly, the charge under the oxidation or reduction peak responses 

does not scale linearly with the concentration of the redox reagent, which may be indicative 

of a more complex system including adsorption to the nanocrystal surfaces or precipitation 

phenomena. 

 

Figure 4 

 

Interesting is also the apparent increase in the resistivity that causes the widening of the 

peak-to-peak separation in the voltammetric response. For an ideal voltammetric response 

with contributions from diffusion the peak-to-peak separation should be 0 Volt. It is 

therefore possible to estimate the average resistivity from the increase in peak-to-peak 

separation based on equation 3: 
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For the three cases in Figure 4 the estimated resistance values are obtained as (i) 0.18 M, 

(ii) 1.2 M, and (iii) 2.4 M for 1 mM, 0.1 mM, and 0.01 mM Fe(CN)6
3-/4-, respectively. 

These apparent resistance values are caused by the current flow and the resulting potential 

gradient over the nanocellulose film with respect to the position of the reference probe. The 

resistance is likely to be unevenly distributed over the working electrode surface (reaching 

into the meniscus) with regions closer to the counter electrode experiencing higher 

resistance. A better approach for the determination of the “true” resistivity in the thin 

electrolyte film can be based on 4-point probe measurements (see Figure 4D) where the 

inner two probes (see Figure 1C) operate as a potential gradient sensor (with the help of 

the reversible Fe(CN)6
3-/4- redox probe). With a relatively large potential window of 0.5 V 

reasonably linear (Ohmic) current responses are observed which suggest resistance values 

of (i) 60 k, (ii) 0.6 M, and (iii) 1.2 M for 1 mM, 0.1 mM, and 0.01 mM Fe(CN)6
3-/4-, 

respectively. However, more precise measurements are possible with less polarisation and 

with a smaller potential amplitude and employing impedance methods. The nature of this 

resistivity effect requires more study, but when confirmed for other types of analyte, this 

parameter could be employed analytically.  

 

 

Figure 5 
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Four-point probe impedance measurements (see Figure 5A) confirm the presence of an 

Ohmic resistance within the electrolyte film of ca. 64 k consistent with the 4-point probe 

voltammetry measurement. At frequencies higher than 200 Hz artefacts due to the 4-point 

probe geometry and sample properties are observed (e.g. inductive behaviour due to the 

non-ideal geometry [19]). Nevertheless, within the chosen measurement range phase angle 

and Bode impedance plots confirm resistive behaviour. 

 

Figure 5B shows impedance data for the 3-point probe measurement configuration where 

the Faradaic current responses also show significant effects. The resulting RC element 

shows a resistance of ca. 100 k at higher frequencies and then an increasing capacitive 

component towards lower frequencies consistent with the presence of the Fe(CN)6
3-/4- 

redox system and absence of diffusional transport. Both types of measurement geometries, 

3-point and 4-point probe, and both types of measurement modes, voltammetry and 

impedance, could be of use in thin film sensor or chromatography applications [20]. In 

future, in particular the use of a wider range of chemically selective/responsive redox 

systems could provide very fast and versatile sensor systems. 

 

 

 

 

4. Conclusion 



12 

 

For the model redox system Fe(CN)6
3-/4- in aqueous electrolyte solution, it has been shown 

that thin film voltammetry and impedance measurements are possible on a cellulose 

nanocrystal substrate and with extremely thin layers of electrolyte (ca. 100 nm). The 

impedance measurement offers high sensitivity with potential for future development into 

gas or humidity detection systems. In contrast, the voltammetry experiment offers a new 

approach to microphase redox cycling [21] where the redox reagent can become an active 

ingredient of the sensor process [22]. This could be developed for example into H2S 

selectivity [23] or biological oxygen demand detection [24] and many other chemically 

selective electroanalytical processes. By operating in a very small (310 pL or less) volume, 

this technique could become very fast (no diffusional delays) and able to deal with arrays 

of samples, for example in high-throughput applications. Improvements for future pico-

electroanalytical sensor applications will be necessary in particular in (i) the nanocellulose 

substrate, (ii) the design of the probe electrodes (shape, diameter, positioning), and (iii) in 

the choice of electrolyte system (concentration and type of humidity-responsive 

electrolyte). 
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Figure 1. (A) Photograph of the 4-point probe with 250 m diameter platinum wires with 

approximately 1 mm inter-electrode gap positioned on a cotton-extracted nanocrystalline 

cellulose modified glass slide. (B) Schematic drawing of the 3-point probe configuration for 

voltammetry. (C) Schematic drawing of the 4-point probe configuration for resistance 

measurements. 
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Figure 2. (A) Scanning electron microscopy (SEM; with 5 nm chromium layer to promote 

conductivity) and (B) atomic force microscopy (AFM) images of nanocrystalline cellulose 

spin-coated onto glass. (C) AFM cross-sectional image showing typical thickness of 40 

nm. 
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Figure 3. (A) Cyclic voltammograms (scan rate 20 mVs-1) for a film formed from 0.1 M 

LiCl and 1 mM K4Fe(CN)6 and 1 mM K3Fe(CN)6 in a cellulose nanocrystal film in an 

atmosphere with (i) 60%, (ii) 65%, (iii) 70%, (iv) 75%, (v) 80% relative humidity. (B) 

Cyclic voltammograms (scan rate (i) 20, (ii) 10, and (iii) 5 mVs-1) at 60% relative humidity. 

(C) Plot of the charge under the voltammetric peak versus scan rate. (D) Schematic drawing 

of the electrode sample contact (not to scale). 
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Figure 4. (A) Cyclic voltammograms (scan rate (i) 5, (ii) 10, (iii) 20 mVs-1) for a film 

formed from 0.1 M LiCl and 1 mM K4Fe(CN)6 and 1 mM K3Fe(CN)6 in a cellulose  

nanocrystal film in an atmosphere with 60% relative humidity. (B) As above but with 0.1 

mM K4Fe(CN)6 and 0.1 mM K3Fe(CN)6. (C) As above but with 0.01 mM K4Fe(CN)6 and 

0.01 mM K3Fe(CN)6. (D) Four-point probe voltammetry measurement (scan rate 10 mVs-

1) of resistance responses for the above three samples with (i) 1 mM K4Fe(CN)6 and 1 mM 

K3Fe(CN)6, (ii) 0.1 mM K4Fe(CN)6 and 0.1 mM K3Fe(CN)6, and (iii) 0.01 mM K4Fe(CN)6 

and 0.01 mM K3Fe(CN)6. 
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Figure 5. Bode plots for (A) 4-point probe and (B) 3-point-probe impedance data 

(frequency range 200 to 0.1 Hz, amplitude 25 mV, at open circuit potential) for a film 

formed from 0.1 M LiCl and 1 mM K4Fe(CN)6 and 1 mM K3Fe(CN)6 in a nanocrystalline 

cellulose film in an atmosphere with 60% relative humidity. 

 

 


