1,340 research outputs found
Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates
This article discusses the results of transmission electron microscopy (TEM)-based characterization of strontium-doped lead zirconate titanate (PSZT) thin films. The thin films were deposited by radio frequency magnetron sputtering at 300°C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and (100) silicon. The TEM analysis was carried out using a combination of high-resolution imaging, energy filtered imaging, energy dispersive X-ray (EDX) analysis, and hollow cone illumination. At the interface between the PSZT films and gold, an amorphous silicon-rich layer (about 4 nm thick) was observed, with the film composition remaining uniform otherwise. The films were found to be polycrystalline with a columnar structure perpendicular to the substrate. Interdiffusion between the bottom metal layers and silicon was observed and was confirmed using secondary ion mass spectrometry. This occurs due to the temperature of deposition (300°C) being close to the eutectic point of gold and silicon (363°C). The diffused regions in silicon were composed primarily of gold (analyzed by EDX) and were bounded by (111) silicon planes, highlighted by the triangular diffused regions observed in the two-dimensional TEM image
Integration of microfluidic channels and optical waveguides using low-cost polymer microfabrication techniques
Recent progress on the realization of a silicon integrated biophotonic chip using plasma etching and laser ablation is presented. The chip utilizes films of SU-8 and UV-15 polymer material. An intersecting optical waveguide and microfluidic channel exhibiting good optical transmission across the channel is demonstrated
A simple two-module problem to exemplify building-block assembly under crossover
Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it
Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy
Aim To use parallel array pyrosequencing to deconvolute
mixtures of mitochondrial DNA (mtDNA) sequence and
provide high resolution analysis of mtDNA heteroplasmy.
Methods The hypervariable segment 1 (HV1) of the mtDNA
control region was analyzed from 30 individuals using
the 454 GS Junior instrument. Mock mixtures were used
to evaluate the systemâs ability to deconvolute mixtures
and to reliably detect heteroplasmy, including heteroplasmic
differences between 5 family members of the same
maternal lineage. Amplicon sequencing was performed
on polymerase chain reaction (PCR) products generated
with primers that included multiplex identifiers (MID) and
adaptors for pyrosequencing. Data analysis was performed
using NextGENeÂź software. The analysis of an autosomal
short tandem repeat (STR) locus (D18S51) and a Y-STR locus
(DYS389 I/II) was performed simultaneously with a portion
of HV1 to illustrate that multiplexing can encompass
different markers of forensic interest.
Results Mixtures, including heteroplasmic variants, can be
detected routinely down to a component ratio of 1:250 (20
minor variant copies with a coverage rate of 5000 sequences)
and can be readily detected down to 1:1000 (0.1%) with
expanded coverage. Amplicon sequences from D18S51,
DYS389 I/II, and the second half of HV1 were successfully
partitioned and analyzed.
Conclusions The ability to routinely deconvolute mtDNA
mixtures down to a level of 1:250 allows for high resolution
analysis of mtDNA heteroplasmy, and for differentiation
of individuals from the same maternal lineage. The
pyrosequencing approach results in poor resolution of
homopolymeric sequences, and PCR/sequencing artifacts
require a filtering mechanism similar to that for STR stutter
and spectral bleed through. In addition, chimeric sequences
from jumping PCR must be addressed to make
the method operational
A New Metaheuristic Bat-Inspired Algorithm
Metaheuristic algorithms such as particle swarm optimization, firefly
algorithm and harmony search are now becoming powerful methods for solving many
tough optimization problems. In this paper, we propose a new metaheuristic
method, the Bat Algorithm, based on the echolocation behaviour of bats. We also
intend to combine the advantages of existing algorithms into the new bat
algorithm. After a detailed formulation and explanation of its implementation,
we will then compare the proposed algorithm with other existing algorithms,
including genetic algorithms and particle swarm optimization. Simulations show
that the proposed algorithm seems much superior to other algorithms, and
further studies are also discussed.Comment: 10 pages, 2 figure
Strategy bifurcation and spatial inhomogeneity in a simple model of competing sellers
We present a simple one-parameter model for spatially localised evolving
agents competing for spatially localised resources. The model considers selling
agents able to evolve their pricing strategy in competition for a fixed market.
Despite its simplicity, the model displays extraordinarily rich behavior. In
addition to ``cheap'' sellers pricing to cover their costs, ``expensive''
sellers spontaneously appear to exploit short-term favorable situations. These
expensive sellers ``speciate'' into discrete price bands. As well as variety in
pricing strategy, the ``cheap'' sellers evolve a strongly correlated spatial
structure, which in turn creates niches for their expensive competitors. Thus
an entire ecosystem of coexisting, discrete, symmetry-breaking strategies
arises.Comment: 6 pages, 6 figures, epl2; 1 new figure, include nash equilibrium
analysis, typo fixe
Nongaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process
The appropriate description of fluctuations within the framework of
evolutionary game theory is a fundamental unsolved problem in the case of
finite populations. The Moran process recently introduced into this context
[Nowak et al., Nature (London) 428, 646 (2004)] defines a promising standard
model of evolutionary game theory in finite populations for which analytical
results are accessible. In this paper, we derive the stationary distribution of
the Moran process population dynamics for arbitrary games for the
finite size case. We show that a nonvanishing background fitness can be
transformed to the vanishing case by rescaling the payoff matrix. In contrast
to the common approach to mimic finite-size fluctuations by Gaussian
distributed noise, the finite size fluctuations can deviate significantly from
a Gaussian distribution.Comment: 4 pages (2 figs). Published in Physical Review E (Rapid
Communications
A quantum genetic algorithm with quantum crossover and mutation operations
In the context of evolutionary quantum computing in the literal meaning, a
quantum crossover operation has not been introduced so far. Here, we introduce
a novel quantum genetic algorithm which has a quantum crossover procedure
performing crossovers among all chromosomes in parallel for each generation. A
complexity analysis shows that a quadratic speedup is achieved over its
classical counterpart in the dominant factor of the run time to handle each
generation.Comment: 21 pages, 1 table, v2: typos corrected, minor modifications in
sections 3.5 and 4, v3: minor revision, title changed (original title:
Semiclassical genetic algorithm with quantum crossover and mutation
operations), v4: minor revision, v5: minor grammatical corrections, to appear
in QI
Annealing schedule from population dynamics
We introduce a dynamical annealing schedule for population-based optimization
algorithms with mutation. On the basis of a statistical mechanics formulation
of the population dynamics, the mutation rate adapts to a value maximizing
expected rewards at each time step. Thereby, the mutation rate is eliminated as
a free parameter from the algorithm.Comment: 6 pages RevTeX, 4 figures PostScript; to be published in Phys. Rev.
- âŠ