1,474 research outputs found

    Detailed stratigraphic correlation of the Neogene sedimentary sequences on the Ontong Java Plateau by well logging; ODP Sites 803, 805, 806, 807, and DSDP Site 586

    Get PDF
    We used well logs, in some cases combined with shipboard physical properties measurements to make more complete profiles and to correlate between sites on the Ontong Java Plateau. By comparing sediment bulk density, velocity, and resistivity logs from adjacent holes at the same site, we showed that even subtle features of the well logs are reproducible and are caused by variations in sedimentation. With only minor amounts of biostratigraphic information, we could readily correlate these sedimentary features across the entire top of the Ontong Java Plateau, demonstrating that for most of the Neogene the top of the plateau is a single sedimentary province. We found it more difficult, but still possible, to correlate in detail sites from the top of the plateau to those drilled on the flanks. The pattern of sedimentation rate variation down the flank of the plateau cannot be interpreted as simply controlled by dissolution. Site 805, in particular, oscillates between accumulating sediment at roughly the same rate as cores on top of the Ontong Java Plateau, and accumulating sediment as slowly as Site 803, 200 m deeper in the water column. These oscillations do not match earlier reconstructions of central Pacific carbonate compensation depth variations

    Deployable reflector antenna performance optimization using automated surface correction and array-feed compensation

    Get PDF
    Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz

    High-resolution geochemical variations at Sites 723, 728, and 731: a comparison of X-ray fluorescence and geochemical logs

    Get PDF
    Journal ArticleGeochemical logging is a routine part of the Ocean Drilling Program, yet the reliability of ODP geochemical logs has rarely been evaluated quantitatively. On ODP Leg 117, geochemical logs were obtained at Sites 723, 728, and 731. We report here an evaluation of ODP geochemical log quality based on high-resolution sampling and X-ray fluorescence measurement of 398 core samples from the three sites. At these sites we lacked the complete suite of high-quality logs needed for accurate log-based estimation of elemental percentages; only calcium and silicon logs had magnitudes similar to those from XRF. However, relative variations of log-based elemental abundances could be determined. Our comparisons of the XRF analyses with the character of variations in geochemical logs indicates that the reliability of ODP geochemical logs varies substantially, within short intervals and particularly between sites. In general, the geochemical logs are capable of detecting changes in formation geochemistry that are larger than the following thresholds: 2% for Ca, 2%-6% for Si, 0.5%-l% for K, 0.1% for Ti, 0.5% for Fe, and 0.4% for Al. All sulfur variations observed in the XRF data, as well as many of the iron variations, were below the resolving power of the geochemical logging tools. These precisions are generally similar to those determined at the Conoco test well by Chapman et al. (1987), in spite of the very different ODP logging conditions

    Site U1334

    No full text
    Integrated Ocean Drilling Program (IODP) Site U1334 (7°59.998?N, 131°58.408?W; 4799 meters below sea level [mbsl]) (Fig. F1; Table T1) is located ~380 km southeast of previously drilled Ocean Drilling Program (ODP) Site 1218 (~42 Ma crust) in the central area drilled during the Pacific Equatorial Age Transect (PEAT) program (IODP Expedition 320/321). Site U1334 (~38 Ma crust) is situated ~100 km north of the Clipperton Fracture Zone on abyssal hill topography draped with ~280 m sediment (Fig. F2). The fabric of the abyssal hills within the sites is oriented either due north or slightly east of due north.Water depth in the vicinity of Site U1334 ranges between 5.0 and 5.1 km for the depressions between the abyssal hills. The abyssal hills range between 4.70 and 4.85 km water depth and generally show a thicker and more consistent sediment cover than the basins. In fact, a significant amount of the bathymetric difference between hills and basins is controlled by the amount of sediment cover. The comparison of sediment thickness and clarity of seismic sections led us to select a location on the middle elevation of one of the abyssal plateaus.Site U1334 sediments were estimated to have been deposited on top of late middle Eocene crust with an age of ~38 Ma and target the events bracketing the Eocene–Oligocene transition with the specific aim of recovering carbonate-bearing sediments of latest Eocene age prior to a large deepening of the calcium carbonate compensation depth (CCD) that occurred during this greenhouse to icehouse transition (Kennett and Shackleton, 1976; Miller et al., 1991; Zachos et al., 1996; Coxall et al., 2005). The Eocene–Oligocene transition experienced the most dramatic deepening of the Pacific CCD during the Paleogene (van Andel, 1975), which has now been shown by Coxall et al. (2005) to coincide with a rapid stepwise increase in benthic oxygen stable isotope ratios, interpreted to reflect a combination of growth of the Antarctic ice sheet and decrease in deepwater temperatures (DeConto et al., 2008; Liu et al., 2009).<br/

    IODP Proposal 626: "Cenozoic Equatorial Age Transect – Following the Palaeo-equator"

    No full text
    As the largest ocean, the Pacific is intricately linked to major changes in the global climate system that took place during the Cenozoic. Throughout the Cenozoic the Pacific plate has had a northward component. Thus, the Pacific is unique, in that the thick sediment bulge of biogenic rich deposits from the currently narrowly focused zone of equatorial upwelling is slowly moving away from the equator. Hence, older sections are not deeply buried and can be recovered by drilling. Previous ODP Legs 138 and 199 were designed as transects across the paleo-equator in order to study the changing patterns of sediment deposition across equatorial regions, while this proposal aims to recover an orthogonal “age-transect” along the paleo-equator. Both previous legs were remarkably successful in giving us new insights into the workings of the climate and carbon system, productivity changes across the zone of divergence, time dependent calcium carbonate dissolution, bio- and magnetostratigraphy, the location of the ITCZ, and evolutionary patterns for times of climatic change and upheaval. Together with older DSDP drilling in the eastern equatorial Pacific, both Legs also helped to delineate the position of the paleo-equator and variations in sediment thickness from approximately 150°W to 110°W. As we have gained more information about the past movement of plates, and where in time “critical” climate events are located, we now propose to drill an age-transect (“flow-line”) along the position of the paleo-equator in the Pacific, targeting selected time-slices of interest where calcareous sediments have been preserved best. Leg 199 enhanced our understanding of extreme changes of the calcium carbonate compensation depth across major geological boundaries during the last 55 million years. A very shallow CCD during most of the Paleogene makes it difficult to obtain well preserved sediments, but we believe our siting strategy will allow us to drill the most promising sites and to obtain a unique sedimentary biogenic carbonate archive for time periods just after the Paleocene- Eocene boundary event, the Eocene cooling, the Eocene/Oligocene transition, the “one cold pole” Oligocene, the Oligocene-Miocene transition, and the Miocene, contributing to the objectives of the IODP Extreme Climates Initiative, and providing material that the previous legs were not able to recover

    Laboratory and Well-Log Velocity and Density Measurements from the Ontong Java Plateau: New in-situ corrections to laboratory data for pelagic carbonates

    Get PDF
    During Ocean Drilling Program Leg 130, sonic velocity and bulk density/porosity well logs were measured in five separate holes drilled through the sequence of pelagic carbonate oozes, chalks, and limestones that comprise the thick, continuous sedimentary cover on the Ontong Java Plateau. An internally consistent and continuous suite of shipboard laboratory velocity and sediment physical properties measurements were made from the top of each hole down through the entire logged interval. Because of the high quality of the data, extensive overlap of 500 m or more between the log and laboratory measurements at each hole, and the homogeneous nature of the sediments, we have been able to compare laboratory and in-situ log measurements in detail and to evaluate factors that alter laboratory data from their in-situ values. For measurements of bulk density and porosity, differences between laboratory and in-situ log measurements are very small and remain constant over the entire range of depths studied. We have applied a simple hydraulic rebound correction to the laboratory data that compensates for pore fluid expansion after removal of a sediment sample from in-situ conditions. The small, correctable differences between the laboratory and log data imply that mechanical rebound is significantly less than previous estimates (maximum near 5%) of rebound in pelagic carbonates. Furthermore, porosity rebound cannot be used to correct laboratory sonic velocity measurements to in-situ values. Such a rebound correction implicitly requires that laboratory and in-situ data must occupy identical fields on velocity-porosity crossplots. This condition is not met for the Ontong Java Plateau results because laboratory and in-situ logging data occupy distinct trends with little overlap between the two types of measurement. Mechanical rebound in pelagic carbonates cannot be used to correct either laboratory porosity or velocity measurements to in-situ values. The complex porosity systematics of these carbonates resulting from varying abundances of hollow foraminifer grains precluded use of an empirical correction derived from the log porosity and velocity data. Laboratory sonic velocity measurements can be corrected to in-situ values at all of the Ontong Java Plateau sites using a depth-based function derived from downhole differences between log and laboratory velocities in Hole 807A. The applicability of the depth correction implies that the effect of overburden pressure reduction on sediment elastic moduli is the most significant factor affecting laboratory velocity measurements. The depth correction to laboratory velocity measurements appears to be generally applicable to pelagic carbonate oozes and chalks of the Ontong Java Plateau, regardless of depositional depth or sediment age

    Downhole logging as a paeoceanographic tool on ocean drilling program leg 138: Interface between high-resolution stratigraphy and regional syntheses

    Get PDF
    On Ocean Drilling Program (ODP) Leg 138, standard shipboard procedures were modified to allow for the real-time monitoring of several laboratory core-scanning systems that provide centimeter-scale measurements of saturated bulk density, magnetic susceptibility and digital color reflectance. These continuous, high-resolution data sets were used to ensure the proper offset of multiple holes and to splice together complete sedimentary sections. Typically, the spliced, continuousediment sections were found to be about 10% longer than the section drilled, as measured by the length of the drill string. While the source of this elongation is not yet fully understood, it must be compensated for in order to property determine sediment fluxes and mass accumulation rates. Downhole logging, in conjunction with inverse correlation techniques provided a means to determine where the distortion occurred and to correct back to true in sire depths. Downhole logging also provides a means, through the generation of synthetic seismograms, of precisely relating the paleoceanographic events found in the core record to the high-resolution seismic record. Once correlated to the seismic record, the spatial and temporal extent of paleoceanographic events can be traced well beyond the borehole. Most seismic events in the equatorial Pacific are related to rapid changes in carbonate contenthat, in turn, are related to both productivity events (often expressed as monospecific laminated diatom oozes) and times of enhanced dissolution. While many of these events may have oceanwide extent, others, like the absence of carbonate in the late-Miocene to Recent in the Guatemala Basin have been shown to be regional and confined to only the deeper portions of the Guatemala Basin. As we identify and trace specific paleoceanographic events in the seismic record, we can begin to explore the response of the ocean through gradients of latitude, productivity, and depth

    Downhole Logging as a Paeoceanographic Tool on Ocean Drilling Program Leg 138: Interface Between High-Resolution Stratigraphy and Regional Syntheses

    Get PDF
    On Ocean Drilling Program (ODP) Leg 138, standard shipboard procedures were modified to allow for the real-time monitoring of several laboratory core-scanning systems that provide centimeter-scale measurements of saturated bulk density, magnetic susceptibility and digital color reflectance. These continuous, high-resolution data sets were used to ensure the proper offset of multiple holes and to splice together complete sedimentary sections. Typically, the spliced, continuous sediment sections were found to be about 10% longer than the section drilled, as measured by the length of the drill string. While the source of this elongation is not yet fully understood, it must be compensated for in order to property determine sediment fluxes and mass accumulation rates. Downhole logging, in conjunction with inverse correlation techniques provided a means to determine where the distortion occurred and to correct back to true in situ depths. Downhole logging also provides a means, through the generation of synthetic seismograms, of precisely relating the paleoceanographic events found in the core record to the high-resolution seismic record. Once correlated to the seismic record, the spatial and temporal extent of paleoceanographic events can be traced well beyond the borehole. Most seismic events in the equatorial Pacific are related to rapid changes in carbonate content that, in turn, are related to both productivity events (often expressed as monospecific laminated diatom oozes) and times of enhanced dissolution. While many of these events may have oceanwide extent, others, like the absence of carbonate in the late-Miocene to Recent in the Guatemala Basin have been shown to be regional and confined to only the deeper portions of the Guatemala Basin. As we identify and trace specific paleoceanographic events in the seismic record, we can begin to explore the response of the ocean through gradients of latitude, productivity, and depth
    • …
    corecore