868 research outputs found

    Colored Pseudo-Goldstone Bosons and Gauge Boson Pairs

    Full text link
    If the electroweak symmetry breaking sector contains colored particles weighing a few hundred GeV, then they will be copiously produced at a hadron supercollider. Colored technipions can rescatter into pairs of gauge bosons. As proposed by Bagger, Dawson, and Valencia, this leads to gauge boson pair rates far larger than in the standard model. In this note we reconsider this mechanism, and illustrate it in a model in which the rates can be reliably calculated. The observation of both an enhanced rate of gauge-boson-pair events and colored particles would be a signal that the colored particles were pseudo-Goldstone bosons of symmetry breaking.Comment: 10 pages, 2 figures not include

    Boston Writing Project

    Get PDF
    The Boston Writing Project focuses on the core mission of improving the teaching of writing and improving the use of writing across the disciplines by offering high-quality professional development programs for educators, at all grade levels, K–16 and across the curriculum

    The Phenomenology of a Hidden Symmetry Breaking Sector

    Full text link
    We calculate the production rate of gauge-boson pairs at the SSC in a model with a ``hidden'' electroweak symmetry breaking sector. We show that the signal of electroweak symmetry breaking is lower than the background and that we cannot necessarily rely on gauge boson pairs as a signal of the dynamics of symmetry breaking.Comment: harvmac, 8 pages (4 figures), BUHEP-92-23 new version corrects error in figure

    Electroweak Corrections in Technicolor Reconsidered

    Full text link
    Radiative corrections to electroweak parameters in technicolor theories may be evaluated by one of two techniques: either one estimates spectral function integrals using scaled QCD data, or one uses naive dimensional analysis with a chiral Lagrangian. The former yields corrections to electroweak parameters proportional to the number of flavors and the number of colors, while the latter is proportional to the number of flavors squared and is independent of the number of colors. We attempt to resolve this apparent contradiction by showing that the spectrum of technicolor one obtains by scaling QCD data to high energies is unlikely to resemble that of an actual technicolor theory. The resonances are likely to be much lighter than naively supposed and the radiative corrections to electroweak parameters may by much larger. We also argue that much less is known about the spectrum and the radiative corrections in technicolor than was previously believed.Comment: 17 pages (which incl 3 figures), BUHEP-92-25 HUTP-92/A033, text uses harvmac, figures use picte

    Most vital segment barriers

    Get PDF
    We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases

    Antimatter research in Space

    Get PDF
    Two of the most compelling issues facing astrophysics and cosmology today are to understand the nature of the dark matter that pervades the universe and to understand the apparent absence of cosmological antimatter. For both issues, sensitive measurements of cosmic-ray antiprotons and positrons, in a wide energy range, are crucial. Many different mechanisms can contribute to antiprotons and positrons production, ranging from conventional reactions up to exotic processes like neutralino annihilation. The open problems are so fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that experiments in this field will probably be of the greatest interest in the next years. Here we will summarize the present situation, showing the different hypothesis and models and the experimental measurements needed to lead to a more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray Symposium, Moscow, July 2002, submitted to Journal of Physics

    Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    Get PDF
    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16–17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 GeV. Both the absolute flux of antiprotons and the antiproton/proton ratio are consistent with recent theoretical work in which antiprotons are produced as secondary products of cosmic ray interactions with the interstellar medium. This consistency implies a lower limit to the antiproton lifetime of ∼10 to the 7th yr
    • …
    corecore